enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    The Dirichlet function is not Riemann-integrable on any segment of despite being bounded because the set of its discontinuity points is not negligible (for the Lebesgue measure). The Dirichlet function provides a counterexample showing that the monotone convergence theorem is not true in the context of the Riemann integral.

  3. Dirichlet L-function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_L-function

    The Dirichlet L-function L(s, χ) = 1 − 3 −s + 5 −s − 7 −s + ⋅⋅⋅ (sometimes given the special name Dirichlet beta function), with trivial zeros at the negative odd integers. Let χ be a primitive character modulo q, with q > 1. There are no zeros of L(s, χ) with Re(s) > 1. For Re(s) < 0, there are zeros at certain negative ...

  4. Dirichlet's principle - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_principle

    The name "Dirichlet's principle" is due to Bernhard Riemann, who applied it in the study of complex analytic functions. [1]Riemann (and others such as Carl Friedrich Gauss and Peter Gustav Lejeune Dirichlet) knew that Dirichlet's integral is bounded below, which establishes the existence of an infimum; however, he took for granted the existence of a function that attains the minimum.

  5. Dirichlet kernel - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_kernel

    The convolution of D n (x) with any function f of period 2 π is the nth-degree Fourier series approximation to f, i.e., we have () = () = = ^ (), where ^ = is the k th Fourier coefficient of f. This implies that in order to study convergence of Fourier series it is enough to study properties of the Dirichlet kernel.

  6. List of things named after Peter Gustav Lejeune Dirichlet

    en.wikipedia.org/wiki/List_of_things_named_after...

    Dirichlet algebra; Dirichlet beta function; Dirichlet boundary condition (differential equations) Neumann–Dirichlet method; Dirichlet characters (number theory, specifically zeta and L-functions. 1831) Dirichlet conditions (Fourier series) Dirichlet convolution (number theory and arithmetic functions) Dirichlet density (number theory ...

  7. Dirichlet problem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_problem

    In mathematics, a Dirichlet problem asks for a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region. [1] The Dirichlet problem can be solved for many PDEs, although originally it was posed for Laplace's equation. In that case the ...

  8. Peter Gustav Lejeune Dirichlet - Wikipedia

    en.wikipedia.org/wiki/Peter_Gustav_Lejeune_Dirichlet

    Dirichlet also studied the first boundary-value problem, for the Laplace equation, proving the uniqueness of the solution; this type of problem in the theory of partial differential equations was later named the Dirichlet problem after him. A function satisfying a partial differential equation subject to the Dirichlet boundary conditions must ...

  9. Dirichlet boundary condition - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_boundary_condition

    In finite-element analysis, the essential or Dirichlet boundary condition is defined by weighted-integral form of a differential equation. [2] The dependent unknown u in the same form as the weight function w appearing in the boundary expression is termed a primary variable , and its specification constitutes the essential or Dirichlet boundary ...