enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    Notably, is the first uncountable cardinal number that can be demonstrated within Zermelo–Fraenkel set theory not to be equal to the cardinality of the set of all real numbers: For any natural number , we can consistently assume that =, and moreover it is possible to assume that is as least as large as any cardinal number we like.

  3. Cardinality of the continuum - Wikipedia

    en.wikipedia.org/wiki/Cardinality_of_the_continuum

    Since the natural numbers have cardinality , each real number has digits in its expansion. Since each real number can be broken into an integer part and a decimal fraction, we get: c ≤ ℵ 0 ⋅ 10 ℵ 0 ≤ 2 ℵ 0 ⋅ ( 2 4 ) ℵ 0 = 2 ℵ 0 + 4 ⋅ ℵ 0 = 2 ℵ 0 {\displaystyle {\mathfrak {c}}\leq \aleph _{0}\cdot 10^{\aleph _{0}}\leq 2 ...

  4. Table of mathematical symbols by introduction date - Wikipedia

    en.wikipedia.org/wiki/Table_of_mathematical...

    1698 (perhaps deriving from a much earlier use of middle dot to separate juxtaposed numbers) division slash (a.k.a. solidus ) 1718 (deriving from horizontal fraction bar, invented by Abu Bakr al-Hassar in the 12th century)

  5. Names of large numbers - Wikipedia

    en.wikipedia.org/wiki/Names_of_large_numbers

    The name of a number 10 3n+3, where n is greater than or equal to 1000, is formed by concatenating the names of the numbers of the form 10 3m+3, where m represents each group of comma-separated digits of n, with each but the last "-illion" trimmed to "-illi-", or, in the case of m = 0, either "-nilli-" or "-nillion". [17]

  6. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal to zero. Thus a non-negative number is either zero or positive.

  7. Integer overflow - Wikipedia

    en.wikipedia.org/wiki/Integer_overflow

    Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.

  8. Googol - Wikipedia

    en.wikipedia.org/wiki/Googol

    To put in perspective the size of a googol, the mass of an electron, just under 10 −30 kg, can be compared to the mass of the visible universe, estimated at between 10 50 and 10 60 kg. [5] It is a ratio in the order of about 10 80 to 10 90, or at most one ten-billionth of a googol (0.00000001% of a googol).

  9. Sign (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Sign_(mathematics)

    A number is positive if it is greater than zero. A number is negative if it is less than zero. A number is non-negative if it is greater than or equal to zero. A number is non-positive if it is less than or equal to zero. When 0 is said to be both positive and negative, [citation needed] modified phrases are used to refer to the sign of a number: