enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    Firstly, if the true population mean is unknown, then the sample variance (which uses the sample mean in place of the true mean) is a biased estimator: it underestimates the variance by a factor of (n − 1) / n; correcting this factor, resulting in the sum of squared deviations about the sample mean divided by n-1 instead of n, is called ...

  3. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  4. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    Mathematically, the variance of the sampling mean distribution obtained is equal to the variance of the population divided by the sample size. This is because as the sample size increases, sample means cluster more closely around the population mean.

  5. Sample mean and covariance - Wikipedia

    en.wikipedia.org/wiki/Sample_mean_and_covariance

    The sample covariance matrix has in the denominator rather than due to a variant of Bessel's correction: In short, the sample covariance relies on the difference between each observation and the sample mean, but the sample mean is slightly correlated with each observation since it is defined in terms of all observations.

  6. Neyman allocation - Wikipedia

    en.wikipedia.org/wiki/Neyman_allocation

    Neyman allocation determines the sample size n h for each stratum h that minimizes the variance of the estimated population mean or total. The Neyman allocation formula is: = where: n h is the sample size for stratum h; n is the total sample size; N h is the population size for stratum h; S h is the standard deviation of the variable of ...

  7. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    Algorithms for calculating variance play a major role in computational statistics.A key difficulty in the design of good algorithms for this problem is that formulas for the variance may involve sums of squares, which can lead to numerical instability as well as to arithmetic overflow when dealing with large values.

  8. Cochran's theorem - Wikipedia

    en.wikipedia.org/wiki/Cochran's_theorem

    This shows that the sample mean and sample variance are independent. This can also be shown by Basu's theorem, and in fact this property characterizes the normal distribution – for no other distribution are the sample mean and sample variance independent. [3]

  9. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    The definitional equation of sample variance is = (¯), where the divisor is called the degrees of freedom (DF), the summation is called the sum of squares (SS), the result is called the mean square (MS) and the squared terms are deviations from the sample mean. ANOVA estimates 3 sample variances: a total variance based on all the observation ...