enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Identity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Identity_(mathematics)

    Visual proof of the Pythagorean identity: for any angle , the point (,) = (⁡, ⁡) lies on the unit circle, which satisfies the equation + =.Thus, ⁡ + ⁡ =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...

  3. List of mathematical identities - Wikipedia

    en.wikipedia.org/.../List_of_mathematical_identities

    Euler's identity; Fibonacci's identity see Brahmagupta–Fibonacci identity or Cassini and Catalan identities; Heine's identity; Hermite's identity; Lagrange's identity; Lagrange's trigonometric identities; List of logarithmic identities; MacWilliams identity; Matrix determinant lemma; Newton's identity; Parseval's identity; Pfister's sixteen ...

  4. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    The multiplicative identity is 1; anything multiplied by 1 is itself. This feature of 1 is known as the identity property: [27] [28] =. Property of 0 Any number multiplied by 0 is 0. This is known as the zero property of multiplication: [27] = Negation −1 times any number is equal to the additive inverse of that number:

  5. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    These are the three main logarithm laws/rules/principles, [3] from which the other properties listed above can be proven. Each of these logarithm properties correspond to their respective exponent law, and their derivations/proofs will hinge on those facts. There are multiple ways to derive/prove each logarithm law – this is just one possible ...

  6. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  7. Distributive property - Wikipedia

    en.wikipedia.org/wiki/Distributive_property

    The ubiquitous identity that relates inverses to the binary operation in any group, namely () =, which is taken as an axiom in the more general context of a semigroup with involution, has sometimes been called an antidistributive property (of inversion as a unary operation).

  8. Multiplicative function - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_function

    In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and = () whenever a and b are coprime.. An arithmetic function f(n) is said to be completely multiplicative (or totally multiplicative) if f(1) = 1 and f(ab) = f(a)f(b) holds for all positive integers a and b, even when they are not coprime.

  9. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    Today the commutative property is a well-known and basic property used in most branches of mathematics. The first recorded use of the term commutative was in a memoir by François Servois in 1814, [ 1 ] [ 10 ] which used the word commutatives when describing functions that have what is now called the commutative property.