Search results
Results from the WOW.Com Content Network
A logical formula is considered to be in DNF if it is a disjunction of one or more conjunctions of one or more literals. [2] [3] [4] A DNF formula is in full disjunctive normal form if each of its variables appears exactly once in every conjunction and each conjunction appears at most once (up to the order of variables).
If is used as notation to designate the result of replacing every instance of conjunction with disjunction, and every instance of disjunction with conjunction (e.g. with , or vice-versa), in a given formula , and if ¯ is used as notation for replacing every sentence-letter in with its negation (e.g., with ), and if the symbol is used for ...
In logic, mathematics and linguistics, and is the truth-functional operator of conjunction or logical conjunction. The logical connective of this operator is typically represented as ∧ {\displaystyle \wedge } [ 1 ] or & {\displaystyle \&} or K {\displaystyle K} (prefix) or × {\displaystyle \times } or ⋅ {\displaystyle \cdot } [ 2 ] in ...
A logical formula is considered to be in CNF if it is a conjunction of one or more disjunctions of one or more literals. As in disjunctive normal form (DNF), the only propositional operators in CNF are or ( ∨ {\displaystyle \vee } ), and ( ∧ {\displaystyle \wedge } ), and not ( ¬ {\displaystyle \neg } ).
It deals with propositions [1] (which can be true or false) [10] and relations between propositions, [11] including the construction of arguments based on them. [12] Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and ...
Intuitionistic logic has found practical use in mathematics despite the challenges presented by the inability to utilize these rules. One reason for this is that its restrictions produce proofs that have the disjunction and existence properties, making it also suitable for other forms of mathematical constructivism.
Sometimes precedence between conjunction and disjunction is unspecified requiring to provide it explicitly in given formula with parentheses. The order of precedence determines which connective is the "main connective" when interpreting a non-atomic formula.
Disjunction has also been given numerous non-classical treatments, motivated by problems including Aristotle's sea battle argument, Heisenberg's uncertainty principle, as well as the numerous mismatches between classical disjunction and its nearest equivalents in natural languages. [1] [2] An operand of a disjunction is a disjunct. [3]