Search results
Results from the WOW.Com Content Network
English: Analysis of data structures, tree compared to hash and array based structures, height balanced tree compared to more perfectly balanced trees, a simple height balanced tree class with test code, comparable statistics for tree performance, statistics of worst case strictly-AVL-balanced trees versus perfect full binary trees.
For height-balanced binary trees, the height is defined to be logarithmic () in the number of items. This is the case for many binary search trees, such as AVL trees and red–black trees . Splay trees and treaps are self-balancing but not height-balanced, as their height is not guaranteed to be logarithmic in the number of items.
In a binary tree the balance factor of a node X is defined to be the height difference ():= (()) (()) [6]: 459 of its two child sub-trees rooted by node X. A node X with () < is called "left-heavy", one with () > is called "right-heavy", and one with () = is sometimes simply called "balanced".
Height-Balanced. BATON is considered balanced if and only if the height of its two sub-trees at any node in the tree differs by at most one. If any node detects that the height-balanced constraint is violated, a restructuring process is initiated to ensure that the tree remains balanced.
A tree-pyramid (T-pyramid) is a "complete" tree; every node of the T-pyramid has four child nodes except leaf nodes; all leaves are on the same level, the level that corresponds to individual pixels in the image.
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
A weight-balanced tree is a binary search tree that stores the sizes of subtrees in the nodes. That is, a node has fields key, of any ordered type; value (optional, only for mappings) left, right, pointer to node; size, of type integer. By definition, the size of a leaf (typically represented by a nil pointer) is zero.
A binary search tree is said to be weight-balanced if half the nodes are on the left of the root, and half on the right. An α-weight-balanced node is defined as meeting a relaxed weight balance criterion: