Search results
Results from the WOW.Com Content Network
Perhaps the chief use of the inverse gamma distribution is in Bayesian statistics, where the distribution arises as the marginal posterior distribution for the unknown variance of a normal distribution, if an uninformative prior is used, and as an analytically tractable conjugate prior, if an informative prior is required. [1]
The closely related inverse-gamma distribution is used as a conjugate prior for scale parameters, such as the variance of a normal distribution. If α is a positive integer, then the distribution represents an Erlang distribution; i.e., the sum of α independent exponentially distributed random variables, each of which has a mean of θ.
In probability theory and statistics, an inverse distribution is the distribution of the reciprocal of a random variable. Inverse distributions arise in particular in the Bayesian context of prior distributions and posterior distributions for scale parameters .
A gamma distribution with shape parameter α = v/2 and rate parameter β = 1/2 is a chi-squared distribution with ν degrees of freedom. A chi-squared distribution with 2 degrees of freedom (k = 2) is an exponential distribution with a mean value of 2 (rate λ = 1/2 .)
The scaled-inverse-chi-squared distribution is exactly the same distribution as the inverse gamma distribution, but with a different parameterization, i.e. = , = . The reason for the usefulness of this characterization is that in Bayesian statistics the inverse gamma distribution is the conjugate prior distribution of the variance of a Gaussian ...
A generalization of this distribution which allows for a multivariate mean and a completely unknown positive-definite covariance matrix (whereas in the multivariate inverse-gamma distribution the covariance matrix is regarded as known up to the scale factor ) is the normal-inverse-Wishart distribution
In probability and statistics, the inverse-chi-squared distribution (or inverted-chi-square distribution [1]) is a continuous probability distribution of a positive-valued random variable. It is closely related to the chi-squared distribution. It is used in Bayesian inference as conjugate prior for the variance of the normal distribution. [2]
i.e., the inverse-gamma distribution, where () is the ordinary Gamma function. The Inverse Wishart distribution is a special case of the inverse matrix gamma distribution when the shape parameter = and the scale parameter =. Another generalization has been termed the generalized inverse Wishart distribution, .