Search results
Results from the WOW.Com Content Network
The distance from a point to a plane in three-dimensional Euclidean space [7] The distance between two lines in three-dimensional Euclidean space [8] The distance from a point to a curve can be used to define its parallel curve, another curve all of whose points have the same distance to the given curve. [9]
The weight is assigned using the spatial closeness (using the spatial kernel ) and the intensity difference (using the range kernel ). [2] Consider a pixel located at (,) that needs to be denoised in image using its neighbouring pixels and one of its neighbouring pixels is located at (,).
A simple way to parallelize single-color line rasterization is to let multiple line-drawing algorithms draw offset pixels of a certain distance from each other. [2] Another method involves dividing the line into multiple sections of approximately equal length, which are then assigned to different processors for rasterization. The main problem ...
This example shows how Euclidean distance will calculate the distance between objects to determine how similar the items are. Note that most text embeddings will be at least a few hundred dimensions instead of just two. Euclidean distance is a standard distance metric used to measure the dissimilarity between two points in a multi-dimensional ...
where (,) is the predicted projection of point on image and (,) denotes the Euclidean distance between the image points represented by vectors and . Because the minimum is computed over many points and many images, bundle adjustment is by definition tolerant to missing image projections, and if the distance metric is chosen reasonably (e.g ...
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
The way Lowe [2] determined whether a given candidate should be kept or 'thrown out' is by checking the ratio between the distance from this given candidate and the distance from the closest keypoint which is not of the same object class as the candidate at hand (candidate feature vector / closest different class feature vector), the idea is ...
A nearest-neighbour method is a simple approach for finding the Euclidean distance between two vectors, where the minimum can be classified as the closest subject. [ 3 ] : 590 Intuitively, the recognition process with the eigenface method is to project query images into the face-space spanned by eigenfaces calculated, and to find the closest ...