Search results
Results from the WOW.Com Content Network
In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]
In a cyclic orthodiagonal quadrilateral, the anticenter coincides with the point where the diagonals intersect. [3] Brahmagupta's theorem states that for a cyclic orthodiagonal quadrilateral, the perpendicular from any side through the point of intersection of the diagonals bisects the opposite side. [3]
If a cyclic quadrilateral is also orthodiagonal, the distance from the circumcenter to any side equals half the length of the opposite side. [23] In a cyclic orthodiagonal quadrilateral, the distance between the midpoints of the diagonals equals the distance between the circumcenter and the point where the diagonals intersect. [23]
In Euclidean geometry, a harmonic quadrilateral, or harmonic quadrangle, [1] is a quadrilateral that can be inscribed in a circle (cyclic quadrilateral) in which the products of the lengths of opposite sides are equal. It has several important properties.
Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).
[2] [3] A kite may also be called a dart, [4] particularly if it is not convex. [5] [6] Every kite is an orthodiagonal quadrilateral (its diagonals are at right angles) and, when convex, a tangential quadrilateral (its sides are tangent to an inscribed circle). The convex kites are exactly the quadrilaterals that are both orthodiagonal and ...
It’s like facing criticism for being the least impactful Nobel Prize winner. Or the bottom of the class at Harvard. Or the slowest runner at the Olympics.
Harmonic quadrilateral: a cyclic quadrilateral such that the products of the lengths of the opposing sides are equal. Bicentric quadrilateral: it is both tangential and cyclic. Orthodiagonal quadrilateral: the diagonals cross at right angles. Equidiagonal quadrilateral: the diagonals are of equal length.