Search results
Results from the WOW.Com Content Network
Simulink is a MATLAB-based graphical programming environment for modeling, simulating and analyzing multidomain dynamical systems. Its primary interface is a graphical block diagramming tool and a customizable set of block libraries .
MATLAB (an abbreviation of "MATrix LABoratory" [22]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
For example, elements can use real or integer values to simulate DSP functions or sampled data filters. Because the event-driven algorithm is faster than the standard SPICE matrix solution, simulation time is greatly reduced for circuits that use event-driven models in place of analog models. [5]
Ground robots and includes: standard path planning algorithms (bug, distance transform, D*, and PRM), lattice planning, kinodynamic planning , localization (EKF, particle filter), map building and simultaneous localization and mapping (using an EKF or graph-based method), and a Simulink model of a non-holonomic vehicle.
MathWorks sponsored the mathematics exhibit at London's Science Museum. [23] In the coding community, MathWorks hosts MATLAB Central, an online exchange where users ask and answer questions and share code. MATLAB Central currently houses around than 145,000 questions in its MATLAB Answers database. [24]
A matrix equation of the form = is called a Toeplitz system if is a Toeplitz matrix. If is an Toeplitz matrix, then the system has at most only unique values, rather than . We might therefore expect that the solution of a Toeplitz system would be easier, and indeed that is the case.
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.
This toolbox is a collection of MATLAB/OCTAVE routines for model order reduction of linear dynamical systems based on the solution of matrix equations. The implementation is based on spectral projection methods, e.g., methods based on the matrix sign function and the matrix disk function.