enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    A real number a can be regarded as a complex number a + 0i, whose imaginary part is 0. A purely imaginary number bi is a complex number 0 + bi, whose real part is zero. It is common to write a + 0i = a, 0 + bi = bi, and a + (−b)i = a − bi; for example, 3 + (−4)i = 3 − 4i.

  3. Complex conjugate - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate

    In polar form, if and are real numbers then the conjugate of is . This can be shown using Euler's formula . The product of a complex number and its conjugate is a real number: a 2 + b 2 {\displaystyle a^{2}+b^{2}} (or r 2 {\displaystyle r^{2}} in polar coordinates ).

  4. Complex plane - Wikipedia

    en.wikipedia.org/wiki/Complex_plane

    The multiplication of two complex numbers can be expressed more easily in polar coordinates: the magnitude or modulus of the product is the product of the two absolute values, or moduli, and the angle or argument of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a ...

  5. Imaginary number - Wikipedia

    en.wikipedia.org/wiki/Imaginary_number

    An imaginary number is the product of a real number and the imaginary unit i, [note 1] which is defined by its property i 2 = −1. [1] [2] The square of an imaginary number bi is −b 2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary. [3]

  6. Complex logarithm - Wikipedia

    en.wikipedia.org/wiki/Complex_logarithm

    If is given in polar form as =, where and are real numbers with >, then ⁡ + is one logarithm of , and all the complex logarithms of are exactly the numbers of the form ⁡ + (+) for integers . [ 1 ] [ 2 ] These logarithms are equally spaced along a vertical line in the complex plane.

  7. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    In fact, the same proof shows that Euler's formula is even valid for all complex numbers x. A point in the complex plane can be represented by a complex number written in cartesian coordinates. Euler's formula provides a means of conversion between cartesian coordinates and polar coordinates. The polar form simplifies the mathematics when used ...

  8. Argument (complex analysis) - Wikipedia

    en.wikipedia.org/wiki/Argument_(complex_analysis)

    Figure 1. This Argand diagram represents the complex number lying on a plane.For each point on the plane, arg is the function which returns the angle . In mathematics (particularly in complex analysis), the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in ...

  9. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    Because of the order of zeros and poles being defined as a non-negative number n and the symmetry between them, it is often useful to consider a pole of order n as a zero of order –n and a zero of order n as a pole of order –n. In this case a point that is neither a pole nor a zero is viewed as a pole (or zero) of order 0.