enow.com Web Search

  1. Ad

    related to: parabola circle ellipse hyperbola worksheet examples problems 5th pdf
  2. education.com has been visited by 100K+ users in the past month

    Education.com is great and resourceful - MrsChettyLife

    • Education.com Blog

      See what's new on Education.com,

      explore classroom ideas, & more.

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

Search results

  1. Results from the WOW.Com Content Network
  2. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    For ellipses and hyperbolas a standard form has the x-axis as principal axis and the origin (0,0) as center. The vertices are (±a, 0) and the foci (±c, 0). Define b by the equations c 2 = a 2 − b 2 for an ellipse and c 2 = a 2 + b 2 for a hyperbola. For a circle, c = 0 so a 2 = b 2, with radius r = a = b.

  3. Orthoptic (geometry) - Wikipedia

    en.wikipedia.org/wiki/Orthoptic_(geometry)

    Examples: The orthoptic of a parabola is its directrix (proof: see below),; The orthoptic of an ellipse + = is the director circle + = + (see below),; The orthoptic of a hyperbola =, > is the director circle + = (in case of a ≤ b there are no orthogonal tangents, see below),

  4. Gallery of curves - Wikipedia

    en.wikipedia.org/wiki/Gallery_of_curves

    Download as PDF; Printable version; In other projects ... Circle. Ellipse. Parabola. ... Cubic with double point. Strophoid. Semicubical parabola. Serpentine curve ...

  5. Focal conics - Wikipedia

    en.wikipedia.org/wiki/Focal_conics

    F: focus of the red parabola and vertex of the blue parabola. In geometry, focal conics are a pair of curves consisting of [1] [2] either an ellipse and a hyperbola, where the hyperbola is contained in a plane, which is orthogonal to the plane containing the ellipse. The vertices of the hyperbola are the foci of the ellipse and its foci are the ...

  6. Confocal conic sections - Wikipedia

    en.wikipedia.org/wiki/Confocal_conic_sections

    (The parabolas are orthogonal for an analogous reason to confocal ellipses and hyperbolas: parabolas have a reflective property.) Analogous to confocal ellipses and hyperbolas, the plane can be covered by an orthogonal net of parabolas, which can be used for a parabolic coordinate system.

  7. Conjugate diameters - Wikipedia

    en.wikipedia.org/wiki/Conjugate_diameters

    The ellipse, parabola, and hyperbola are viewed as conics in projective geometry, and each conic determines a relation of pole and polar between points and lines. Using these concepts, "two diameters are conjugate when each is the polar of the figurative point of the other." [5] Only one of the conjugate diameters of a hyperbola cuts the curve.

  8. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ...

  9. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    Intersection problems between a line and a conic section (circle, ellipse, parabola, etc.) or a quadric (sphere, cylinder, hyperboloid, etc.) lead to quadratic equations that can be easily solved. Intersections between quadrics lead to quartic equations that can be solved algebraically .

  1. Ad

    related to: parabola circle ellipse hyperbola worksheet examples problems 5th pdf