enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    Backpropagation computes the gradient of a loss function with respect to the weights of the network for a single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this can be derived through ...

  3. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...

  4. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    For a concrete example, consider a typical recurrent network defined by = (,,) = + + where = (,) is the network parameter, is the sigmoid activation function [note 2], applied to each vector coordinate separately, and is the bias vector.

  5. Neural backpropagation - Wikipedia

    en.wikipedia.org/wiki/Neural_backpropagation

    Neural backpropagation is the phenomenon in which, after the action potential of a neuron creates a voltage spike down the axon (normal propagation), another impulse is generated from the soma and propagates towards the apical portions of the dendritic arbor or dendrites (from which much of the original input current originated).

  6. Backpropagation through structure - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  7. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    Simplified example of training a neural network for object detection: The network is trained on multiple images depicting either starfish or sea urchins, which are correlated with "nodes" that represent visual features. The starfish match with a ringed texture and a star outline, whereas most sea urchins match with a striped texture and oval shape.

  8. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    Martin Riedmiller developed three algorithms, all named RPROP. Igel and Hüsken assigned names to them and added a new variant: [2] [3] RPROP+ is defined at A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm.

  9. Java backporting tools - Wikipedia

    en.wikipedia.org/wiki/Java_backporting_tools

    Java backporting tools are programs (usually written in Java) that convert Java classes bytecodes from one version of the Java Platform to an older one (for example Java 5.0 backported to 1.4). Java backporting tools comparison