Search results
Results from the WOW.Com Content Network
Backpropagation computes the gradient of a loss function with respect to the weights of the network for a single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this can be derived through ...
Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...
For a concrete example, consider a typical recurrent network defined by = (,,) = + + where = (,) is the network parameter, is the sigmoid activation function [note 2], applied to each vector coordinate separately, and is the bias vector.
Neural backpropagation is the phenomenon in which, after the action potential of a neuron creates a voltage spike down the axon (normal propagation), another impulse is generated from the soma and propagates towards the apical portions of the dendritic arbor or dendrites (from which much of the original input current originated).
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Simplified example of training a neural network for object detection: The network is trained on multiple images depicting either starfish or sea urchins, which are correlated with "nodes" that represent visual features. The starfish match with a ringed texture and a star outline, whereas most sea urchins match with a striped texture and oval shape.
Martin Riedmiller developed three algorithms, all named RPROP. Igel and Hüsken assigned names to them and added a new variant: [2] [3] RPROP+ is defined at A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm.
Java backporting tools are programs (usually written in Java) that convert Java classes bytecodes from one version of the Java Platform to an older one (for example Java 5.0 backported to 1.4). Java backporting tools comparison