Search results
Results from the WOW.Com Content Network
Dynamic values allow the cursor to use the same parsed expression many times for a similar operation. Above the insertstat is parsed and bound to the database only once. Using dynamic attributes should speed up accesses. Thus the above should run much faster than the equivalent:
Record linkage (also known as data matching, data linkage, entity resolution, and many other terms) is the task of finding records in a data set that refer to the same entity across different data sources (e.g., data files, books, websites, and databases).
will match elements such as A[1], A[2], or more generally A[x] where x is any entity. In this case, A is the concrete element, while _ denotes the piece of tree that can be varied. A symbol prepended to _ binds the match to that variable name while a symbol appended to _ restricts the matches to nodes of that
With the availability of large amounts of DNA data, matching of nucleotide sequences has become an important application. [1] Approximate matching is also used in spam filtering. [5] Record linkage is a common application where records from two disparate databases are matched. String matching cannot be used for most binary data, such as images ...
One of the arguments against using an OODBMS is that it may not be able to execute ad-hoc, application-independent queries. [citation needed] For this reason, many programmers find themselves more at home with an object-SQL mapping system, even though most object-oriented databases are able to process SQL queries to a limited extent. Other ...
[4]: 114 A DataFrame is a 2-dimensional data structure of rows and columns, similar to a spreadsheet, and analogous to a Python dictionary mapping column names (keys) to Series (values), with each Series sharing an index. [4]: 115 DataFrames can be concatenated together or "merged" on columns or indices in a manner similar to joins in SQL.
Fuzzy matching is a technique used in computer-assisted translation as a special case of record linkage. It works with matches that may be less than 100% perfect when finding correspondences between segments of a text and entries in a database of previous translations.
This uses information gleaned during the pre-processing of the pattern in conjunction with suffix match lengths recorded at each match attempt. Storing suffix match lengths requires an additional table equal in size to the text being searched. The Raita algorithm improves the performance of Boyer–Moore–Horspool algorithm. The searching ...