enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Protein primary structure - Wikipedia

    en.wikipedia.org/wiki/Protein_primary_structure

    Protein sequence is typically notated as a string of letters, listing the amino acids starting at the amino-terminal end through to the carboxyl-terminal end. Either a three letter code or single letter code can be used to represent the 22 naturally encoded amino acids, as well as mixtures or ambiguous amino acids (similar to nucleic acid ...

  3. Protein structure - Wikipedia

    en.wikipedia.org/wiki/Protein_structure

    Protein structure is the three-dimensional arrangement of atoms in an amino acid-chain molecule. Proteins are polymers – specifically polypeptides – formed from sequences of amino acids, which are the monomers of the polymer. A single amino acid monomer may also be called a residue, which indicates a

  4. Amino acid - Wikipedia

    en.wikipedia.org/wiki/Amino_acid

    These chains are linear and unbranched, with each amino acid residue within the chain attached to two neighboring amino acids. In nature, the process of making proteins encoded by RNA genetic material is called translation and involves the step-by-step addition of amino acids to a growing protein chain by a ribozyme that is called a ribosome. [58]

  5. N-terminus - Wikipedia

    en.wikipedia.org/wiki/N-terminus

    Each amino acid has an amine group and a carboxylic group. Amino acids link to one another by peptide bonds which form through a dehydration reaction that joins the carboxyl group of one amino acid to the amine group of the next in a head-to-tail manner to form a polypeptide chain. The chain has two ends – an amine group, the N-terminus, and ...

  6. Protein structure prediction - Wikipedia

    en.wikipedia.org/wiki/Protein_structure_prediction

    An alpha-helix with hydrogen bonds (yellow dots) The α-helix is the most abundant type of secondary structure in proteins. The α-helix has 3.6 amino acids per turn with an H-bond formed between every fourth residue; the average length is 10 amino acids (3 turns) or 10 Å but varies from 5 to 40 (1.5 to 11 turns).

  7. Lattice protein - Wikipedia

    en.wikipedia.org/wiki/Lattice_protein

    The lattice statistical model seeks to recreate protein folding by minimizing the free energy of the contacts between hydrophobic amino acids. Hydrophobic amino acid residues are predicted to group around each other, while hydrophilic residues interact with the surrounding water. [5] Different lattice types and algorithms were used to study ...

  8. Alpha helix - Wikipedia

    en.wikipedia.org/wiki/Alpha_helix

    It is also the most extreme type of local structure, and it is the local structure that is most easily predicted from a sequence of amino acids. The alpha helix has a right-handed helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid that is four residues earlier in the protein sequence.

  9. Protein secondary structure - Wikipedia

    en.wikipedia.org/wiki/Protein_secondary_structure

    Amino acids that prefer to adopt helical conformations in proteins include methionine, alanine, leucine, glutamate and lysine ("MALEK" in amino-acid 1-letter codes); by contrast, the large aromatic residues (tryptophan, tyrosine and phenylalanine) and C β-branched amino acids (isoleucine, valine, and threonine) prefer to adopt β-strand ...