enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phenylacetylene - Wikipedia

    en.wikipedia.org/wiki/Phenylacetylene

    Phenylacetylene is a prototypical terminal acetylene, undergoing many reactions expected of that functional group. It undergoes semi hydrogenation over Lindlar catalyst to give styrene . In the presence of base and copper(II) salts, it undergoes oxidative coupling to give diphenylbutadiyne . [ 6 ]

  3. Diphenylacetylene - Wikipedia

    en.wikipedia.org/wiki/Diphenylacetylene

    Yet another method involves the coupling of iodobenzene and the copper salt of phenylacetylene in the Castro-Stephens coupling. The related Sonogashira coupling involves the coupling of iodobenzene and phenylacetylene. Diphenylacetylene is a planar molecule. The central C≡C distance is 119.8 picometers. [1]

  4. Glaser coupling - Wikipedia

    en.wikipedia.org/wiki/Glaser_coupling

    The Hay coupling is variant of the Glaser coupling. It relies on the TMEDA complex of copper(I) chloride to activate the terminal alkyne. Oxygen (air) is used in the Hay variant to oxidize catalytic amounts of Cu(I) to Cu(II) throughout the reaction, as opposed to a stoichiometric amount of Cu(II) used in the Eglington variant. [7]

  5. Naturally occurring phenols - Wikipedia

    en.wikipedia.org/wiki/Naturally_occurring_phenols

    In animals and humans, after ingestion, natural phenols become part of the xenobiotic metabolism. In subsequent phase II reactions, these activated metabolites are conjugated with charged species such as glutathione, sulfate, glycine or glucuronic acid. These reactions are catalysed by a large group of broad-specificity transferases.

  6. Biological carbon fixation - Wikipedia

    en.wikipedia.org/wiki/Biological_carbon_fixation

    Cyanobacteria such as these carry out photosynthesis.Their emergence foreshadowed the evolution of many photosynthetic plants and oxygenated Earth's atmosphere.. Biological carbon fixation, or сarbon assimilation, is the process by which living organisms convert inorganic carbon (particularly carbon dioxide, CO 2) to organic compounds.

  7. Hell–Volhard–Zelinsky halogenation - Wikipedia

    en.wikipedia.org/wiki/Hell–Volhard–Zelinsky...

    An example of the Hell–Volhard–Zelinsky reaction can be seen in the preparation of alanine from propionic acid.In the first step, a combination of bromine and phosphorus tribromide is used in the Hell–Volhard–Zelinsky reaction to prepare 2-bromopropionic acid, [3] which in the second step is converted to a racemic mixture of the amino acid product by ammonolysis.

  8. Michael addition reaction - Wikipedia

    en.wikipedia.org/wiki/Michael_Addition_Reaction

    The current definition of the Michael reaction has broadened to include nucleophiles other than enolates. [9] Some examples of nucleophiles include doubly stabilized carbon nucleophiles such as beta-ketoesters, malonates, and beta-cyanoesters. The resulting product contains a highly useful 1,5-dioxygenated pattern.

  9. Strecker amino acid synthesis - Wikipedia

    en.wikipedia.org/wiki/Strecker_amino_acid_synthesis

    One example of the Strecker synthesis is a multikilogram scale synthesis of an L-valine derivative starting from Methyl isopropyl ketone: [5] (CH 3) 2 CHC(O)CH 3 + HCN + NH 3 → (CH 3) 2 CHC(CN)(NH 2)CH 3 + H 2 O. The initial reaction product of 3-methyl-2butanone with sodium cyanide and ammonia is resolved by application of L-tartaric acid ...