Search results
Results from the WOW.Com Content Network
It is possible to divide an equilateral triangle into three congruent non-convex pentagons, meeting at the center of the triangle, and to tile the plane with the resulting three-pentagon unit. [21] A similar method can be used to subdivide squares into four congruent non-convex pentagons, or regular hexagons into six congruent non-convex ...
A polygon ear. One way to triangulate a simple polygon is based on the two ears theorem, as the fact that any simple polygon with at least 4 vertices without holes has at least two "ears", which are triangles with two sides being the edges of the polygon and the third one completely inside it. [5]
It is always possible to partition a concave polygon into a set of convex polygons. A polynomial-time algorithm for finding a decomposition into as few convex polygons as possible is described by Chazelle & Dobkin (1985). [5] A triangle can never be concave, but there exist concave polygons with n sides for any n > 3.
Fan triangulation of a convex polygon Fan triangulation of a concave polygon with a unique concave vertex. In computational geometry, a fan triangulation is a simple way to triangulate a polygon by choosing a vertex and drawing edges to all of the other vertices of the polygon.
In the concave case, the line through one of the diagonals bisects the other.) One diagonal is a line of symmetry. It divides the quadrilateral into two congruent triangles that are mirror images of each other. [7] One diagonal bisects both of the angles at its two ends. [7]
In geometry, a bigon, [1] digon, or a 2-gon, is a polygon with two sides and two vertices.Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visualised in elliptic space.
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.
The most common version uses the concept of "equidecomposability" of polygons: two polygons are equidecomposable if they can be split into finitely many triangles that only differ by some isometry (in fact only by a combination of a translation and a rotation). In this case the Wallace–Bolyai–Gerwien theorem states that two polygons are ...