Search results
Results from the WOW.Com Content Network
Pyrrole is an extremely weak base for an amine, with a conjugate acid pK a of −3.8. The most thermodynamically stable pyrrolium cation (C 4 H 6 N +) is formed by protonation at the 2 position. Substitution of pyrrole with alkyl substituents provides a more basic molecule—for example, tetramethylpyrrole has a conjugate acid pK a of +3.7.
The reaction employs an organic acidic medium such as acetic acid or propionic acid as typical reaction solvents. Alternatively p-toluenesulfonic acid or various Lewis acids can be used with chlorinated solvents. The aldehyde and pyrrole are heated in this medium to afford modest yields of the meso tetrasubstituted porphyrins [RCC 4 H 2 N] 4 H 2.
In organic chemistry, the Paal–Knorr synthesis is a reaction used to synthesize substituted furans, pyrroles, or thiophenes from 1,4-diketones.It is a synthetically valuable method for obtaining substituted furans and pyrroles, which are common structural components of many natural products.
The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). [ 1 ] [ 2 ] [ 3 ] The method involves the reaction of an α- amino - ketone (1) and a compound containing an electron-withdrawing group (e.g. an ester as shown) α to a carbonyl group (2) .
The condensation reaction can be shown below: After the condensation, the pyrrole formation can proceed as normal. The Trofimov reaction can produce both N-H and N-vinyl pyrroles depending on the reaction conditions used. The N-vinyl pyrrole can be formed by the deprotonation of the pyrrole nitrogen which then attacks a second acetylene molecule.
The Hantzsch Pyrrole Synthesis, named for Arthur Rudolf Hantzsch, is the chemical reaction of β-ketoesters (1) with ammonia (or primary amines) and α-haloketones (2) to give substituted pyrroles (3).
Tetraphenylporphyrin was first synthesized in 1935 by Rothemund, who caused benzaldehyde and pyrrole to react in a sealed bomb at 150 °C for 24 h. [1] Adler and Longo modified the Rothemund method by allowing benzaldehyde and pyrrole to react for 30 min in refluxing propionic acid (141 °C) open to the air: [2]
The Barton–Zard reaction is a route to pyrrole derivatives via the reaction of a nitroalkene with an α-isocyanide under basic conditions. [1] It is named after Derek Barton and Samir Zard who first reported it in 1985.