enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pulse-coupled networks - Wikipedia

    en.wikipedia.org/wiki/Pulse-coupled_networks

    The Eckhorn model provided a simple and effective tool for studying small mammal’s visual cortex, and was soon recognized as having significant application potential in image processing. In 1994, Johnson adapted the Eckhorn model to an image processing algorithm, calling this algorithm a pulse-coupled neural network.

  3. Minimum spanning tree-based segmentation - Wikipedia

    en.wikipedia.org/wiki/Minimum_spanning_tree...

    Image segmentation strives to partition a digital image into regions of pixels with similar properties, e.g. homogeneity. [1] The higher-level region representation simplifies image analysis tasks such as counting objects or detecting changes, because region attributes (e.g. average intensity or shape [2]) can be compared more readily than raw ...

  4. Graph cuts in computer vision - Wikipedia

    en.wikipedia.org/wiki/Graph_cuts_in_computer_vision

    For example, the algorithm is not well-suited for segmentation of thin objects like blood vessels (see [13] for a proposed fix). Multiple labels: Graph cuts is only able to find a global optimum for binary labeling (i.e., two labels) problems, such as foreground/background image segmentation.

  5. Point Cloud Library - Wikipedia

    en.wikipedia.org/wiki/Point_Cloud_Library

    The Point Cloud Library (PCL) is an open-source library of algorithms for point cloud processing tasks and 3D geometry processing, such as occur in three-dimensional computer vision. The library contains algorithms for filtering, feature estimation, surface reconstruction, 3D registration, [5] model fitting, object recognition, and segmentation ...

  6. Image segmentation - Wikipedia

    en.wikipedia.org/wiki/Image_segmentation

    In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...

  7. Active contour model - Wikipedia

    en.wikipedia.org/wiki/Active_contour_model

    A simple elastic snake is defined by a set of n points for =, …,, the internal elastic energy term , and the external edge-based energy term .The purpose of the internal energy term is to control the deformations made to the snake, and the purpose of the external energy term is to control the fitting of the contour onto the image.

  8. Insight Segmentation and Registration Toolkit - Wikipedia

    en.wikipedia.org/wiki/Insight_Segmentation_and...

    The Insight/Examples/ source code examples distributed with ITK. The source code is available. In addition, it is heavily commented and works in combination with the ITK Software Guide. The separate InsightApplications checkout. The Applications web pages. These are extensive descriptions, with images and references, of the examples found in #1 ...

  9. Watershed (image processing) - Wikipedia

    en.wikipedia.org/wiki/Watershed_(image_processing)

    The random walker algorithm is a segmentation algorithm solving the combinatorial Dirichlet problem, adapted to image segmentation by L. Grady in 2006. [16] In 2011, C. Couprie et al. proved that when the power of the weights of the graph converge toward infinity, the cut minimizing the random walker energy is a cut by maximum spanning forest. [17]