Search results
Results from the WOW.Com Content Network
Run-and-tumble motion is a movement pattern exhibited by certain bacteria and other microscopic agents. It consists of an alternating sequence of "runs" and "tumbles": during a run, the agent propels itself in a fixed (or slowly varying) direction, and during a tumble, it remains stationary while it reorients itself in preparation for the next run.
Cell division. All cells can be considered motile for having the ability to divide into two new daughter cells. [1]Motility is the ability of an organism to move independently using metabolic energy.
Bacterial gliding is a process of motility whereby a bacterium can move under its own power. Generally, the process occurs whereby the bacterium moves along a surface in the general direction of its long axis. [5] Gliding may occur via distinctly different mechanisms, depending on the type of bacterium.
Here, ρ represents the density of the fluid; u is a characteristic velocity of the system (for instance, the velocity of a swimming particle); l is a characteristic length scale (e.g., the swimmer size); and μ is the viscosity of the fluid.
Quantifying walking often involves assessing the kinematics of individual steps. For more information on methods for acquiring this data, see Methods of Study. The first task is to parse walking data into individual steps. Methods for parsing individual steps from walking data rely heavily on the data collection process.
Amoeboid movement is the most typical mode of locomotion in adherent eukaryotic cells. [1] It is a crawling-like type of movement accomplished by protrusion of cytoplasm of the cell involving the formation of pseudopodia ("false-feet") and posterior uropods.
Biological processes are those processes that are necessary for an organism to live and that shape its capacities for interacting with its environment. Biological processes are made of many chemical reactions or other events that are involved in the persistence and transformation of life forms.
The motion of a particle located at position can be described by the Smoluchowski's limit of the Langevin equation: [11] [12] = + (), where is the diffusion coefficient of the particle, is the friction coefficient per unit of mass, () the force per unit of mass, and is a Brownian motion.