Search results
Results from the WOW.Com Content Network
Then is called a pivotal quantity (or simply a pivot). Pivotal quantities are commonly used for normalization to allow data from different data sets to be compared. It is relatively easy to construct pivots for location and scale parameters: for the former we form differences so that location cancels, for the latter ratios so that scale cancels.
Conversely, given i.i.d. normal variables with known mean 1 and unknown variance σ 2, the sample mean ¯ is not an ancillary statistic of the variance, as the sampling distribution of the sample mean is N(1, σ 2 /n), which does depend on σ 2 – this measure of location (specifically, its standard error) depends on dispersion.
The pivotal method is based on a random variable that is a function of both the observations and the parameters but whose distribution does not depend on the parameter. Such random variables are called pivotal quantities. By using these, probability statements about the observations and parameters may be made in which the probabilities do not ...
Commonly used estimators include sample mean, unbiased sample variance and sample covariance. A random variable that is a function of the random sample and of the unknown parameter, but whose probability distribution does not depend on the unknown parameter is called a pivotal quantity or pivot.
Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.
The theorem states that any estimator that is unbiased for a given unknown quantity and that depends on the data only through a complete, sufficient statistic is the unique best unbiased estimator of that quantity. The Lehmann–Scheffé theorem is named after Erich Leo Lehmann and Henry Scheffé, given their two early papers. [2] [3]
A common method is to "research backwards" in building a questionnaire by first determining the information sought (i.e., Brand A is more/less preferred by x% of the sample vs. Brand B, and y% vs. Brand C), then being certain to ask all the needed questions to obtain the metrics for the report. Unneeded questions should be avoided, as they are ...
The dynamic lot-size model in inventory theory, is a generalization of the economic order quantity model that takes into account that demand for the product varies over time. The model was introduced by Harvey M. Wagner and Thomson M. Whitin in 1958. [1] [2]