enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Covariance function - Wikipedia

    en.wikipedia.org/wiki/Covariance_function

    A function is a valid covariance function if and only if [2] this variance is non-negative for all possible choices of N and weights w 1, ..., w N. A function with this property is called positive semidefinite .

  3. Peres–Horodecki criterion - Wikipedia

    en.wikipedia.org/wiki/Peres–Horodecki_criterion

    As the transposition map preserves eigenvalues, the spectrum of () is the same as the spectrum of , and in particular () must still be positive semidefinite. Thus must also be positive semidefinite. This proves the necessity of the PPT criterion.

  4. Sylvester's criterion - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_criterion

    In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant:

  5. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    Current events; Random article; About Wikipedia; Contact us; Contribute Help; ... In mathematics, positive semidefinite may refer to: Positive semidefinite function;

  6. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every ⁡ (), , and , , where ⁡ is the domain of .

  7. Semidefinite programming - Wikipedia

    en.wikipedia.org/wiki/Semidefinite_programming

    Semidefinite programming (SDP) is a subfield of mathematical programming concerned with the optimization of a linear objective function (a user-specified function that the user wants to minimize or maximize) over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron.

  8. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can be seen from the following simple derivation:

  9. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    The vectors shown are unit eigenvectors of the (symmetric, positive-semidefinite) covariance matrix scaled by the square root of the corresponding eigenvalue. Just as in the one-dimensional case, the square root is taken because the standard deviation is more readily visualized than the variance .

  1. Related searches matlab check positive semidefinite or negative list of events in spanish

    positive semidefinite mathspositive semidefinite function