Search results
Results from the WOW.Com Content Network
Condensation products from propenal and pentaerythritol were first described in 1950. [4] [5] The synthesis is carried using a general synthesis method for acetals at acid pH (pH 3-5) by reacting an alcohol with an excess of aldehyde, which is stabilized with hydroquinone in the case of propenal, which tends to polymerize at elevated temperature.
Acetals are stable compared to hemiacetals but their formation is a reversible equilibrium as with esters.As a reaction to create an acetal proceeds, water must be removed from the reaction mixture, for example, with a Dean–Stark apparatus, lest it hydrolyse the product back to the hemiacetal.
Ortho esters are readily hydrolyzed in mild aqueous acid to form esters: . RC(OR ′) 3 + H 2 O → RCO 2 R ′ + 2 R ′ OH. For example, trimethyl orthoformate CH(OCH 3) 3 may be hydrolyzed (under acidic conditions) to methyl formate and methanol; [5] and may be further hydrolyzed (under alkaline conditions) to salts of formic acid and methanol.
Particularly common spiro compounds are ketal (acetal) formed by condensation of cyclic ketones and diols and dithiols. [15] [16] [17] A simple case is the acetal 1,4-dioxaspiro[4.5]decane from cyclohexanone and glycol. Cases of such ketals and dithioketals are common.
Oxidative cyclizations of olefinic alcohols to cyclic ethers may occur via [3+2], [2+2], [1] or epoxidation mechanisms. Insights into the mechanism is provided by structure-reactivity, implicating direct epoxidation by the chromate ester. [1] Subsequent epoxide opening and release of chromium leads to the observed products.
In contradistinction to the O,O‑acetal case, it is not needed to remove water from the reaction mixture in order to shift the equilibrium. [65] S,O-Acetals are hydrolyzed a factor of 10,000 times faster than the corresponding S,S-acetals. Their formation follows analogously from the thioalcohol.
Hemiacetals form in the reaction between alcohols and aldehydes or ketones. Using an acid catalyst, the reaction proceeds via nucleophilic attack of the carbonyl group by the alcohol. [4] A subsequent nucleophilic attack of the hemiacetal by the alcohol results in an acetal. [2] Solutions of simple aldehydes in alcohols mainly consist of the ...
Acid catalyzed acetal formation from the corresponding hemiacetal. Acetals, as already pointed out, are stable tetrahedral intermediates so they can be used as protective groups in organic synthesis. Acetals are stable under basic conditions, so they can be used to protect ketones from a base. The acetal group is hydrolyzed under acidic conditions.