Search results
Results from the WOW.Com Content Network
A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]
The lowest common denominator of a set of fractions is the lowest number that is a multiple of all the denominators: their lowest common multiple. The product of the denominators is always a common denominator, as in: + = + =
gcd(a, b) is closely related to the least common multiple lcm(a, b): we have gcd(a, b)⋅lcm(a, b) = | a⋅b |. This formula is often used to compute least common multiples: one first computes the GCD with Euclid's algorithm and then divides the product of the given numbers by their GCD. The following versions of distributivity hold true:
The least common multiple of a and b is equal to their product ab, i.e. lcm(a, b) = ab. [4] As a consequence of the third point, if a and b are coprime and br ≡ bs (mod a), then r ≡ s (mod a). [5] That is, we may "divide by b" when working modulo a.
In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that / is an integer.
It may be useful to look at a stock’s current P/E multiple and compare it to the rest of the industry or its historical range. If the multiple is depressed relative to its peers or history, it ...
In mathematics, a GCD domain (sometimes called just domain) is an integral domain R with the property that any two elements have a greatest common divisor (GCD); i.e., there is a unique minimal principal ideal containing the ideal generated by two given elements. Equivalently, any two elements of R have a least common multiple (LCM). [1]
In arithmetic and number theory, the least common multiple, lowest common multiple, or smallest common multiple of two integers a and b, usually denoted by lcm(a, b), is the smallest positive integer that is divisible by both a and b.