enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tetrakis (triphenylphosphine)palladium (0) - Wikipedia

    en.wikipedia.org/wiki/Tetrakis(triphenylphosphine...

    Tetrakis(triphenylphosphine)palladium(0) (sometimes called quatrotriphenylphosphine palladium) is the chemical compound [Pd(P(C 6 H 5) 3) 4], often abbreviated Pd(PPh 3) 4, or rarely PdP 4. It is a bright yellow crystalline solid that becomes brown upon decomposition in air .

  3. Tetrakis(triphenylphosphine)platinum(0) - Wikipedia

    en.wikipedia.org/wiki/Tetrakis(triphenylphosphi...

    The molecule is tetrahedral, with point group symmetry of T d, as expected for a four-coordinate metal complex of a metal with the d 10 configuration. [4] Even though this complex follows the 18 electron rule, it dissociates triphenylphosphine in solution to give the 16e − derivative containing only three PPh 3 ligands: Pt(PPh 3) 4 → Pt(PPh ...

  4. Triphenylphosphine oxide - Wikipedia

    en.wikipedia.org/wiki/Triphenylphosphine_oxide

    Ph 3 PO is structurally related to POCl 3. [2] As established by X-ray crystallography, the geometry around P is tetrahedral, and the P-O distance is 1.48 Å. [3] Other modifications of Ph 3 PO have been found: For example, a monoclinic form crystalizes in the space group P2 1 /c with Z = 4 and a = 15.066(1) Å, b = 9.037(2) Å, c = 11.296(3) Å, and β = 98.47(1)°.The orthorhombic ...

  5. Palladium compounds - Wikipedia

    en.wikipedia.org/wiki/Palladium_compounds

    The catalytic ability is due to palladium's ability to switch between the Pd 0 and Pd 2+ oxidation states. An organic compound adds across Pd 0 to form an organic Pd 2+ complex (oxidative addition). After transmetalation with an organometallic compound, two organic ligands to Pd 2+ may exit the palladium complex and combine, forming a coupling ...

  6. Template:List of oxidation states of the elements - Wikipedia

    en.wikipedia.org/wiki/Template:List_of_oxidation...

    The oxidation states are also maintained in articles of the elements (of course), and systematically in the table {{Infobox element/symbol-to-oxidation-state}} See also [ edit ]

  7. Triphenylphosphine - Wikipedia

    en.wikipedia.org/wiki/Triphenylphosphine

    Triphenylphosphine undergoes slow oxidation by air to give triphenylphosphine oxide, Ph 3 PO: 2 PPh 3 + O 2 → 2 OPPh 3. This impurity can be removed by recrystallisation of PPh 3 from either hot ethanol or isopropanol. [8] This method capitalizes on the fact that OPPh 3 is more polar and hence more soluble in polar solvents than PPh 3.

  8. (1,1'-Bis(diphenylphosphino)ferrocene)palladium(II) dichloride

    en.wikipedia.org/wiki/(1,1'-Bis(diphenylphosphino...

    The compound is popularly used for palladium-catalyzed coupling reactions, [2] [3] such as the Buchwald–Hartwig amination [4] and the reductive homocoupling of aryl halides. [5] Examples of Buchwald-Hartwig aminations using second generation catalysts including [(dppf)PdCl 2]

  9. Negishi coupling - Wikipedia

    en.wikipedia.org/wiki/Negishi_coupling

    [1] [2] A variety of nickel catalysts in either Ni 0 or Ni II oxidation state can be employed in Negishi cross couplings such as Ni(PPh 3) 4, Ni(acac) 2, Ni(COD) 2 etc. [3] [4] [5] The leaving group X is usually chloride, bromide, or iodide, but triflate and acetyloxy groups are feasible as well. X = Cl usually leads to slow reactions.