Search results
Results from the WOW.Com Content Network
For example, 4% electrical steel has an initial relative permeability (at or near 0 T) of 2,000 and a maximum of 38,000 at T = 1 [5] [6] and different range of values at different percent of Si and manufacturing process, and, indeed, the relative permeability of any material at a sufficiently high field strength trends toward 1 (at magnetic ...
The permeability of ferromagnetic materials is not constant, but depends on H. In saturable materials the relative permeability increases with H to a maximum, then as it approaches saturation inverts and decreases toward one. [2] [3] Different materials have different saturation levels.
It is a measure of material permeability variation after demagnetization, given by a formula = (), where , are permeability values, and t 1, t 2 are time from demagnetization; usually determined for t 1 = 10 min, t 2 = 100 min; range from 2×10 −6 to 12×10 −6 for typical MnZn and NiZn ferrites;
The typical relative permeability (μ r) of electrical steel is 4,000-38,000 times that of vacuum, compared to 1.003-1800 for stainless steel. [ 15 ] [ 16 ] [ 17 ] The magnetic properties of electrical steel are dependent on heat treatment , as increasing the average crystal size decreases the hysteresis loss.
Ferromagnetic materials are noticeably attracted to a magnet, which is a consequence of their substantial magnetic permeability. Magnetic permeability describes the induced magnetization of a material due to the presence of an external magnetic field. For example, this temporary magnetization inside a steel plate accounts for the plate's ...
The following other wikis use this file: Usage on be.wikipedia.org Магнітная пранікальнасць; Usage on da.wikipedia.org Permeabilitet (elektromagnetisme)
Strip of permalloy. Permalloy is a nickel–iron magnetic alloy, with about 80% nickel and 20% iron content.Invented in 1914 by physicist Gustav Elmen at Bell Telephone Laboratories, [1] it is notable for its very high magnetic permeability, which makes it useful as a magnetic core material in electrical and electronic equipment, and also in magnetic shielding to block magnetic fields.
A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, inductors, loudspeakers, magnetic recording heads, and magnetic assemblies.