Search results
Results from the WOW.Com Content Network
Finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis , heat transfer , fluid flow , mass transport, and electromagnetic potential .
The goal of mechanical theory is to solve mechanical problems, such as arise in physics and engineering. Starting from a physical system—such as a mechanism or a star system—a mathematical model is developed in the form of a differential equation. The model can be solved numerically or analytically to determine the motion of the system.
Most mechanical engineering programs also require varying amounts of research or community projects to gain practical problem-solving experience. In the United States it is common for mechanical engineering students to complete one or more internships while studying, though this is not typically mandated by the university.
Design optimization applies the methods of mathematical optimization to design problem formulations and it is sometimes used interchangeably with the term engineering optimization. When the objective function f is a vector rather than a scalar , the problem becomes a multi-objective optimization one.
The finite element method (FEM) is a powerful technique originally developed for numerical solution of complex problems in structural mechanics, and it remains the method of choice for complex systems.
Computational Engineering is an emerging discipline that deals with the development and application of computational models for engineering, known as Computational Engineering Models [1] or CEM. Computational engineering uses computers to solve engineering design problems important to a variety of industries. [ 2 ]
Engineering is the practice of using natural science, mathematics, and the engineering design process [1] to solve problems within technology, increase efficiency and productivity, and improve systems.
Topology optimization has a wide range of applications in aerospace, mechanical, bio-chemical and civil engineering. Currently, engineers mostly use topology optimization at the concept level of a design process. Due to the free forms that naturally occur, the result is often difficult to manufacture.