Search results
Results from the WOW.Com Content Network
The first radio pulsar "CP 1919" (now known as PSR B1919+21), with a pulse period of 1.337 seconds and a pulse width of 0.04-second, was discovered in 1967. [ 6 ] The first binary pulsar , PSR 1913+16 , whose orbit is decaying due to the emission of gravitational radiation at the exact rate predicted by general relativity .
The pulsars P1 ... Pn are sending signals periodically, which are received on Earth. A gravitational wave (GW) perturbs spacetime in between the pulsar and Earth (E) and changes the time of arrival of the pulses. By measuring the spatial correlation of the changes in the pulse parameters of many different pulsar pairings, a GW can be detected.
An X-ray pulsar is a type of binary star system consisting of a typical star (stellar companion) in orbit around a magnetized neutron star.The magnetic field strength at the surface of the neutron star is typically about 10 8 Tesla, over a trillion times stronger than the strength of the magnetic field measured at the surface of the Earth (60 μT).
An intermediate-mass binary pulsar (IMBP) is a pulsar-white dwarf binary system with a relatively long spin period of around 10–200 ms consisting of a white dwarf with a relatively high mass of approximately . [7] The spin periods, magnetic field strengths, and orbital eccentricities of IMBPs are significantly larger than those of low mass binary pulsars (LMBPs). [7]
X-ray pulsar-based navigation and timing (XNAV) or simply pulsar navigation is a navigation technique whereby the periodic X-ray signals emitted from pulsars are used to determine the location of a vehicle, such as a spacecraft in deep space. A vehicle using XNAV would compare received X-ray signals with a database of known pulsar frequencies ...
The pulsar was discovered by Russell Alan Hulse and Joseph Hooton Taylor Jr., of the University of Massachusetts Amherst in 1974. Their discovery of the system and analysis of it earned them the 1993 Nobel Prize in Physics "for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation." [8]
This work was limited in sensitivity by the precision and stability of the pulsar clocks in the array. Following the discovery of the first millisecond pulsar in 1982, Foster and Backer [22] improved the sensitivity to gravitational waves by applying in 1990 the Hellings-Downs analysis to an array of highly stable millisecond pulsars.
This suggests that magnetars are not merely a rare type of pulsar but may be a (possibly reversible) phase in the lives of some pulsars. [23] On September 24, 2008, ESO announced what it ascertained was the first optically active magnetar-candidate yet discovered, using ESO's Very Large Telescope .