Search results
Results from the WOW.Com Content Network
This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons , quarks , gauge bosons and the Higgs boson .
Joseph-Louis Lagrange (1736–1813). In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle (also known as the principle of least action).
The LaGrange Standard & News is a newspaper located in LaGrange, Indiana, United States of America. The newspaper serves all of LaGrange County and covers local news, sports, business, and community events. [1] It is published weekly on Mondays and delivered via the United States Postal Service. [2] The Standard was founded by John K. Marrow in ...
In field theory, the independent variable is replaced by an event in spacetime (x, y, z, t), or more generally still by a point s on a Riemannian manifold.The dependent variables are replaced by the value of a field at that point in spacetime (,,,) so that the equations of motion are obtained by means of an action principle, written as: =, where the action, , is a functional of the dependent ...
Lagrangian dual problem, the problem of maximizing the value of the Lagrangian function, in terms of the Lagrange-multiplier variable; See Dual problem; Lagrangian, a functional whose extrema are to be determined in the calculus of variations; Lagrangian submanifold, a class of submanifolds in symplectic geometry
The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetic, ...
The relativistic Lagrangian can be derived in relativistic mechanics to be of the form: = (˙) (, ˙,). Although, unlike non-relativistic mechanics, the relativistic Lagrangian is not expressed as difference of kinetic energy with potential energy, the relativistic Hamiltonian corresponds to total energy in a similar manner but without including rest energy.
According to the fundamental lemma of calculus of variations, the part of the integrand in parentheses is zero, i.e. ′ = which is called the Euler–Lagrange equation. The left hand side of this equation is called the functional derivative of J [ f ] {\displaystyle J[f]} and is denoted δ J {\displaystyle \delta J} or δ f ( x ...