Search results
Results from the WOW.Com Content Network
For projectiles in unpowered flight, its velocity is highest at leaving the muzzle and drops off steadily because of air resistance.Projectiles traveling less than the speed of sound (about 340 m/s (1,100 ft/s) in dry air at sea level) are subsonic, while those traveling faster are supersonic and thus can travel a substantial distance and even hit a target before a nearby observer hears the ...
There is wide variation in commercial ammunition. A 180 gr (12 g) bullet fired from .357 Magnum handgun can achieve a muzzle energy of 580 ft⋅lbf (790 J). A 110 gr (7.1 g) bullet fired from the same gun might only achieve 400 ft⋅lbf (540 J) of muzzle energy, depending upon the manufacturer of the cartridge.
Another feature of projectile design that has been identified as having an effect on the unwanted limit cycle yaw motion is the chamfer at the base of the projectile. At the very base, or heel of a projectile or bullet, there is a 0.25 to 0.50 mm (0.01 to 0.02 in) chamfer, or radius.
Consolidated Vultee Aircraft (Convair) 14,500 km 117,900 kg Inactive 1959 No 27 Titan I: US Glenn L. Martin Company: 10,200 km 105,140 kg 3.75 Mt Inactive 1959 No Silo 28 Titan II: US Glenn L. Martin Company 15,000 km 154,000 kg 9 Mt Inactive 1962 No Silo 29 Minuteman I: US Boeing 8,900 km 29,000 kg 1.2 Mt Inactive 1961 No Silo 30 Minuteman II: US
This allowed Galileo to show that a bullet's trajectory was a curve. [13] [9] Circa 1665, Sir Isaac Newton derived the law of air resistance. Newton's experiments on drag were through air and fluids. He showed that drag on shot increases proportionately with the density of the air (or the fluid), cross sectional area, and the square of the ...
In the open division, IPSC has a lower power factor requirement of 160 kgr·ft/s for major, while the other IPSC handgun divisions require a power factor of 170 kgr·ft/s for major. Open and revolver are also the only divisions that allows major scoring with a 9 mm bullet diameter (the other handgun divisions require a 10 mm bullet diameter).
The bullet must tightly fit the bore to seal the high pressure of the burning gunpowder. This tight fit results in a large frictional force. The friction of the bullet in the bore does have a slight impact on the final velocity, but that is generally not much of a concern. Of greater concern is the heat that is generated due to the friction.
Bullets used in many cartridges are fired at muzzle velocities faster than the speed of sound [10] [11] —about 343 metres per second (1,130 ft/s) in dry air at 20 °C (68 °F)—and thus can travel substantial distances to their targets before any nearby observers hear the sound of the shots.