enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Accuracy paradox - Wikipedia

    en.wikipedia.org/wiki/Accuracy_paradox

    Even though the accuracy is ⁠ 10 + 999000 / 1000000 ⁠ ≈ 99.9%, 990 out of the 1000 positive predictions are incorrect. The precision of ⁠ 10 / 10 + 990 ⁠ = 1% reveals its poor performance. As the classes are so unbalanced, a better metric is the F1 score = ⁠ 2 × 0.01 × 1 / 0.01 + 1 ⁠ ≈ 2% (the recall being ⁠ 10 + 0 / 10 ...

  3. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    The positive and negative prediction values would be 99%, so there can be high confidence in the result. However, if the prevalence is only 5%, so of the 2000 people only 100 are really sick, then the prediction values change significantly. The likely result is 99 true positives, 1 false negative, 1881 true negatives and 19 false positives.

  4. Positive and negative predictive values - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative...

    The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.

  5. Base rate fallacy - Wikipedia

    en.wikipedia.org/wiki/Base_rate_fallacy

    An example of the base rate fallacy is the false positive paradox (also known as accuracy paradox). This paradox describes situations where there are more false positive test results than true positives (this means the classifier has a low precision). For example, if a facial recognition camera can identify wanted criminals 99% accurately, but ...

  6. Sensitivity and specificity - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_and_specificity

    There are different definitions within laboratory quality control, wherein "analytical sensitivity" is defined as the smallest amount of substance in a sample that can accurately be measured by an assay (synonymously to detection limit), and "analytical specificity" is defined as the ability of an assay to measure one particular organism or ...

  7. FiveThirtyEight - Wikipedia

    en.wikipedia.org/wiki/FiveThirtyEight

    The final prediction by FiveThirtyEight on the morning of election day (November 8, 2016) had Hillary Clinton with a 71% chance to win the 2016 United States presidential election, [69] while other major forecasters had predicted Clinton to win with at least an 85% to 99% probability.

  8. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    This combined with the definition of conditional probability results in the above statement. In other words, if someone tests positive, the probability that they are a cannabis user is only 19%—because in this group, only 5% of people are users, and most positives are false positives coming from the remaining 95%.

  9. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    Prediction intervals are commonly used as definitions of reference ranges, such as reference ranges for blood tests to give an idea of whether a blood test is normal or not. For this purpose, the most commonly used prediction interval is the 95% prediction interval, and a reference range based on it can be called a standard reference range.