enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  3. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power. In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem.

  4. Multinomial theorem - Wikipedia

    en.wikipedia.org/wiki/Multinomial_theorem

    In mathematics, the multinomial theorem describes how to expand a power of a sum in terms of powers of the terms in that sum. It is the generalization of the binomial theorem from binomials to multinomials .

  5. Binomial - Wikipedia

    en.wikipedia.org/wiki/Binomial

    Binomial (polynomial), a polynomial with two terms; Binomial coefficient, numbers appearing in the expansions of powers of binomials; Binomial QMF, a perfect-reconstruction orthogonal wavelet decomposition; Binomial theorem, a theorem about powers of binomials; Binomial type, a property of sequences of polynomials; Binomial series, a ...

  6. Power set - Wikipedia

    en.wikipedia.org/wiki/Power_set

    The binomial theorem is closely related to the power set. A k –elements combination from some set is another name for a k –elements subset, so the number of combinations , denoted as C( n , k ) (also called binomial coefficient ) is a number of subsets with k elements in a set with n elements; in other words it's the number of sets with k ...

  7. Gaussian binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Gaussian_binomial_coefficient

    The Gaussian binomial coefficient, written as () or [], is a polynomial in q with integer coefficients, whose value when q is set to a prime power counts the number of subspaces of dimension k in a vector space of dimension n over , a finite field with q elements; i.e. it is the number of points in the finite Grassmannian (,).

  8. Central binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Central_binomial_coefficient

    The central binomial coefficients give the number of possible number of assignments of n-a-side sports teams from 2n players, taking into account the playing area side The central binomial coefficient ( 2 n n ) {\displaystyle {\binom {2n}{n}}} is the number of arrangements where there are an equal number of two types of objects.

  9. Binomial (polynomial) - Wikipedia

    en.wikipedia.org/wiki/Binomial_(polynomial)

    A binomial is a polynomial which is the sum of two monomials. A binomial in a single indeterminate (also known as a univariate binomial) can be written in the form , where a and b are numbers, and m and n are distinct non-negative integers and x is a symbol which is called an indeterminate or, for historical reasons, a variable.