enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    A total recursive function is a partial recursive function that is defined for every input. Every primitive recursive function is total recursive, but not all total recursive functions are primitive recursive. The Ackermann function A(m,n) is a well-known example of a total recursive function (in fact, provable total), that is not primitive ...

  3. Elementary recursive function - Wikipedia

    en.wikipedia.org/wiki/Elementary_recursive_function

    The definitions of elementary recursive functions are the same as for primitive recursive functions, except that primitive recursion is replaced by bounded summation and bounded product. All functions work over the natural numbers. The basic functions, all of them elementary recursive, are: Zero function. Returns zero: f(x) = 0.

  4. Corecursion - Wikipedia

    en.wikipedia.org/wiki/Corecursion

    A classic example of recursion is computing the factorial, which is defined recursively by 0! := 1 and n! := n × (n - 1)!.. To recursively compute its result on a given input, a recursive function calls (a copy of) itself with a different ("smaller" in some way) input and uses the result of this call to construct its result.

  5. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...

  6. Recursive function - Wikipedia

    en.wikipedia.org/wiki/Recursive_function

    Recursive function may refer to: Recursive function (programming), a function which references itself; General recursive function, a computable partial function from natural numbers to natural numbers Primitive recursive function, a function which can be computed with loops of bounded length; Another name for computable function

  7. Anonymous recursion - Wikipedia

    en.wikipedia.org/wiki/Anonymous_recursion

    Anonymous recursion is primarily of use in allowing recursion for anonymous functions, particularly when they form closures or are used as callbacks, to avoid having to bind the name of the function. Anonymous recursion primarily consists of calling "the current function", which results in direct recursion.

  8. Primitive recursive functional - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_functional

    The primitive recursive functionals are the smallest collection of objects of finite type such that: The constant function f(n) = 0 is a primitive recursive functional; The successor function g(n) = n + 1 is a primitive recursive functional; For any type σ×τ, the functional K(x σ, y τ) = x is a primitive recursive functional

  9. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    where a represents the number of recursive calls at each level of recursion, b represents by what factor smaller the input is for the next level of recursion (i.e. the number of pieces you divide the problem into), and f(n) represents the work that the function does independently of any recursion (e.g. partitioning, recombining) at each level ...