Search results
Results from the WOW.Com Content Network
A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood is defined relative to the specified cell.
In Conway's Game of Life, oscillators had been identified and named as early as 1971. [1] Since then it has been shown that finite oscillators exist for all periods. [2] [3] [4] Additionally, until July 2022, the only known examples for period 34 were considered trivial because they consisted of essentially separate components that oscillate at smaller periods.
A cellular automaton is defined by its cells (often a one- or two-dimensional array), a finite set of values or states that can go into each cell, a neighborhood associating each cell with a finite set of nearby cells, and an update rule according to which the values of all cells are updated, simultaneously, as a function of the values of their neighboring cells.
This category contains articles on specific automaton systems, rather than on specific patterns. It also does not include articles on terminology describing such ...
The Rule 110 cellular automaton (often called simply Rule 110) [a] is an elementary cellular automaton with interesting behavior on the boundary between stability and chaos. In this respect, it is similar to Conway's Game of Life .
In von Neumann's cellular automaton, the finite state machines (or cells) are arranged in a two-dimensional Cartesian grid, and interface with the surrounding four cells. As von Neumann's cellular automaton was the first example to use this arrangement, it is known as the von Neumann neighbourhood. The set of FSAs define a cell space of ...
Seeds is a cellular automaton in the same family as the Game of Life, initially investigated by Brian Silverman [1] [2] and named by Mirek Wójtowicz. [1] [3] It consists of an infinite two-dimensional grid of cells, each of which may be in one of two states: on or off. Each cell is considered to have eight neighbors (Moore neighborhood), as in ...
Any automaton of the above form that contains the element B1 (e.g. B17/S78, or B145/S34) will always be explosive for any finite pattern: at any step, consider the cell (x,y) that has minimum x-coordinate among cells that are on, and among such cells the one with minimum y-coordinate. Then the cell (x-1,y-1) must have exactly one neighbor, and ...