Ads
related to: tangent and secant lines meaning in geometry worksheet 1
Search results
Results from the WOW.Com Content Network
The secant lines PQ are the approximations to the tangent line. In calculus, this idea is the geometric definition of the derivative. The tangent line at point P is a secant line of the curve. A tangent line to a curve at a point P may be a secant line to that curve if it intersects the curve in at least one point other than P.
A tangent line t to a circle C intersects the circle at a single point T. For comparison, secant lines intersect a circle at two points, whereas another line may not intersect a circle at all. This property of tangent lines is preserved under many geometrical transformations, such as scalings, rotation, translations, inversions, and map ...
Tangent to a curve. The red line is tangential to the curve at the point marked by a red dot. Tangent plane to a sphere. In geometry, the tangent line (or simply tangent) to a plane curve at a given point is, intuitively, the straight line that "just touches" the curve at that point.
The tangent-secant theorem can be proven using similar triangles (see graphic). Like the intersecting chords theorem and the intersecting secants theorem, the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle, namely, the power of point theorem.
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
For instance, with respect to a conic (a circle, ellipse, parabola, or hyperbola), lines can be: tangent lines, which touch the conic at a single point; secant lines, which intersect the conic at two points and pass through its interior; [5] exterior lines, which do not meet the conic at any point of the Euclidean plane; or
The tangent line through a point P on the circle is perpendicular to the diameter passing through P. If P = (x 1, y 1) and the circle has centre (a, b) and radius r, then the tangent line is perpendicular to the line from (a, b) to (x 1, y 1), so it has the form (x 1 − a)x + (y 1 – b)y = c.
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types ...
Ads
related to: tangent and secant lines meaning in geometry worksheet 1