enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

  3. Prosthaphaeresis - Wikipedia

    en.wikipedia.org/wiki/Prosthaphaeresis

    Proof without words of the sum-and-difference-to-product cosine identity using an isosceles triangle – x is actually sin a sin b. The trigonometric identities exploited by prosthaphaeresis relate products of trigonometric functions to sums. They include the following:

  4. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    The abundance of the theorems and identities inherited from Fourier series make the Chebyshev polynomials important tools in numeric analysis; for example they are the most popular general purpose basis functions used in the spectral method, [16] often in favor of trigonometric series due to generally faster convergence for continuous functions ...

  5. File:Diagram illustrating sum to product identities for sine ...

    en.wikipedia.org/wiki/File:Diagram_illustrating...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  6. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Conversely, every polynomial in sin(x) and cos(x) may be converted, with Product-to-sum identities, into a linear combination of functions sin(nx) and cos(nx). This equivalence explains why linear combinations are called polynomials. For complex coefficients, there is no difference between such a function and a finite Fourier series.

  7. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six trigonometric functions of θ are, for angles smaller than the right angle:

  8. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    using the trigonometric product-to-sum formulas. This formula is the law of cosines , sometimes called the generalized Pythagorean theorem. [ 37 ] From this result, for the case where the radii to the two locations are at right angles, the enclosed angle Δ θ = π /2, and the form corresponding to Pythagoras' theorem is regained: s 2 = r 1 2 ...

  9. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae , it is one of the basic relations between the sine and cosine functions.