enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    A first order reaction depends on the concentration of only one reactant (a unimolecular reaction). Other reactants can be present, but their concentration has no effect on the rate. The rate law for a first order reaction is [] = [], The unit of k is s −1. [14]

  3. Chemical kinetics - Wikipedia

    en.wikipedia.org/wiki/Chemical_kinetics

    In first-order ordinary equations, the Runge-Kutta method uses a mathematical model that represents the relationship between the temperature and the rate of reaction. It is worth it to calculate the rate of reaction at different temperatures for different concentrations.

  4. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  5. SN1 reaction - Wikipedia

    en.wikipedia.org/wiki/SN1_reaction

    A reaction mechanism was first introduced by Christopher Ingold et al. in 1940. [3] This reaction does not depend much on the strength of the nucleophile, unlike the S N 2 mechanism. This type of mechanism involves two steps. The first step is the ionization of alkyl halide in the presence of aqueous acetone or ethyl alcohol.

  6. Chemical reaction - Wikipedia

    en.wikipedia.org/wiki/Chemical_reaction

    Here k is the first-order rate constant, having dimension 1/time, [A](t) is the concentration at a time t and [A] 0 is the initial concentration. The rate of a first-order reaction depends only on the concentration and the properties of the involved substance, and the reaction itself can be described with a characteristic half-life. More than ...

  7. Molecularity - Wikipedia

    en.wikipedia.org/wiki/Molecularity

    The kinetic order of any elementary reaction or reaction step is equal to its molecularity, and the rate equation of an elementary reaction can therefore be determined by inspection, from the molecularity. [1] The kinetic order of a complex (multistep) reaction, however, is not necessarily equal to the number of molecules involved.

  8. SN2 reaction - Wikipedia

    en.wikipedia.org/wiki/SN2_reaction

    Many reactions studied are solvolysis reactions where a solvent molecule (often an alcohol) is the nucleophile. While still a second order reaction mechanistically, the reaction is kinetically first order as the concentration of the nucleophile–the solvent molecule, is effectively constant during the reaction.

  9. Lindemann mechanism - Wikipedia

    en.wikipedia.org/wiki/Lindemann_mechanism

    Although the net formula for decomposition or isomerization appears to be unimolecular and suggests first-order kinetics in the reactant, the Lindemann mechanism shows that the unimolecular reaction step is preceded by a bimolecular activation step so that the kinetics may actually be second-order in certain cases. [7]