Search results
Results from the WOW.Com Content Network
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic.
In contrast, a variable is a discrete variable if and only if there exists a one-to-one correspondence between this variable and a subset of , the set of natural numbers. [8] In other words, a discrete variable over a particular interval of real values is one for which, for any value in the range that the variable is permitted to take on, there ...
Some real numbers have decimal expansions that eventually get into loops, endlessly repeating a sequence of one or more digits: 1 ⁄ 3 = 0.33333... 1 ⁄ 7 = 0.142857142857... 1318 ⁄ 185 = 7.1243243243... Every time this happens the number is still a rational number (i.e. can alternatively be represented as a ratio of an integer and a ...
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic [1] – do not vary smoothly in this way, but have distinct, separated values. [2]
A collection of n bits may have 2 n states: see binary number for details. Number of states of a collection of discrete variables depends exponentially on the number of variables, and only as a power law on number of states of each variable. Ten bits have more states than three decimal digits .
Computable number: A real number whose digits can be computed by some algorithm. Period: A number which can be computed as the integral of some algebraic function over an algebraic domain. Definable number: A real number that can be defined uniquely using a first-order formula with one free variable in the language of set theory.
A fixed-point data type uses the same, implied, denominator for all numbers. The denominator is usually a power of two.For example, in a hypothetical fixed-point system that uses the denominator 65,536 (2 16), the hexadecimal number 0x12345678 (0x1234.5678 with sixteen fractional bits to the right of the assumed radix point) means 0x12345678/65536 or 305419896/65536, 4660 + the fractional ...
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. [a] Every real number can be almost uniquely represented by an infinite decimal expansion. [b] [1]