Search results
Results from the WOW.Com Content Network
Nocedal is well-known for his research in nonlinear optimization, particularly for his work on L-BFGS [4] [5] and his textbook Numerical Optimization. [6] In 2001, Nocedal co-founded Ziena Optimization Inc. and co-developed the KNITRO software package. [7] Nocedal was a chief scientist at Ziena Optimization Inc. from 2002 to 2012 before the ...
Download as PDF; Printable version ... also known as Hessian-free optimization, [2] ... Nocedal, Jorge (1991). "A numerical study of the limited memory BFGS method ...
The optimization of portfolios is an example of multi-objective optimization in economics. Since the 1970s, economists have modeled dynamic decisions over time using control theory . [ 14 ] For example, dynamic search models are used to study labor-market behavior . [ 15 ]
Artelys Knitro is a commercial software package for solving large scale nonlinear mathematical optimization problems.. KNITRO – (the original solver name) short for "Nonlinear Interior point Trust Region Optimization" (the "K" is silent) – was co-created by Richard Waltz, Jorge Nocedal, Todd Plantenga and Richard Byrd.
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
Created Date: 8/30/2012 4:52:52 PM
Compared with Wolfe's conditions, which is more complicated, Armijo's condition has a better theoretical guarantee. Indeed, so far backtracking line search and its modifications are the most theoretically guaranteed methods among all numerical optimization algorithms concerning convergence to critical points and avoidance of saddle points, see ...
Limited-memory BFGS (L-BFGS or LM-BFGS) is an optimization algorithm in the family of quasi-Newton methods that approximates the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) using a limited amount of computer memory. [1] It is a popular algorithm for parameter estimation in machine learning.