Search results
Results from the WOW.Com Content Network
The change in charge typically occurs due to an influx of sodium ions into a cell, ... When an endothelial cell undergoes depolarization, the result is a marked ...
An initial depolarizing current leads to the opening of the voltage-dependent calcium channels, ultimately resulting in synchronization of individual calcium levels. When patch clamp recordings are conducted, depolarization occurs in the endothelial layer at the same time as the underlying vascular smooth muscle.
Endothelial dysfunction is a result of changes in endothelial function. [ 20 ] [ 21 ] After fat ( lipid ) accumulation and when stimulated by inflammation, endothelial cells become activated, which is characterized by the expression of molecules such as E-selectin, VCAM-1 and ICAM-1, which stimulate the adhesion of immune cells. [ 22 ]
The endothelium maintains vascular homeostasis through the release of active vasodilators.Although nitric oxide (NO) is recognized as the primary factor at level of arteries, increased evidence for the role of another endothelium-derived vasodilator known as endothelium-derived hyperpolarizing factor (EDHF) has accumulated in the last years.
Current measurements of endothelial function via FMD vary due to technical and physiological factors. Furthermore, a negative correlation between percent flow mediated dilation and baseline artery size is recognised as a fundamental scaling problem, leading to biased estimates of endothelial function.
Development of heart is involved in several rounds of EMT and MET. While development splanchnopleure undergo EMT and produce endothelial progenitors, these then form the endocardium through MET. Pericardium is formed by sinus venosus mesenchymal cells that undergo MET. [1] Quite similar processes occur also while regeneration in the injured heart.
Vascular smooth muscle contracts or relaxes to change both the volume of blood vessels and the local blood pressure, a mechanism that is responsible for the redistribution of the blood within the body to areas where it is needed (i.e. areas with temporarily enhanced oxygen consumption).
A nerve impulse causes Na + to enter the cell, resulting in (b) depolarization. At the peak action potential, K + channels open and the cell becomes (c) hyperpolarized. Voltage gated ion channels respond to changes in the membrane potential. Voltage gated potassium, chloride and sodium channels are key components in the generation of the action ...