enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    In fluid dynamics, the Reynolds number (Re) is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. [2] At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent.

  3. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  4. Ohnesorge number - Wikipedia

    en.wikipedia.org/wiki/Ohnesorge_number

    This is often used to relate to free surface fluid dynamics such as dispersion of liquids in gases and in spray technology. [3] [4] In inkjet printing, liquids whose Ohnesorge number are in the range 0.1 < Oh < 1.0 are jettable (1<Z<10 where Z is the reciprocal of the Ohnesorge number). [1] [5]

  5. Ergun equation - Wikipedia

    en.wikipedia.org/wiki/Ergun_equation

    where: = (), = = (), is the modified Reynolds number, is the packed bed friction factor,; is the pressure drop across the bed,; is the length of the bed (not the column), is the equivalent spherical diameter of the packing,

  6. Oseen equations - Wikipedia

    en.wikipedia.org/wiki/Oseen_equations

    A vessel of diameter of 10 µm with a flow of 1 millimetre/second, viscosity of 0.02 poise for blood, density of 1 g/cm 3 and a heart rate of 2 Hz, will have a Reynolds number of 0.005 and a Womersley number of 0.0126. At these small Reynolds and Womersley numbers, the viscous effects of the fluid become predominant.

  7. Churchill–Bernstein equation - Wikipedia

    en.wikipedia.org/wiki/Churchill–Bernstein_equation

    The Churchill–Bernstein equation is valid for a wide range of Reynolds numbers and Prandtl numbers, as long as the product of the two is greater than or equal to 0.2, as defined above. The Churchill–Bernstein equation can be used for any object of cylindrical geometry in which boundary layers develop freely, without constraints imposed by ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Direct numerical simulation - Wikipedia

    en.wikipedia.org/wiki/Direct_numerical_simulation

    Therefore, the computational cost of DNS is very high, even at low Reynolds numbers. For the Reynolds numbers encountered in most industrial applications, the computational resources required by a DNS would exceed the capacity of the most powerful computers currently available. However, direct numerical simulation is a useful tool in ...