enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematics of three-phase electric power - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_three-phase...

    The plotted line represents the variation of instantaneous voltage (or current) with respect to time. This cycle repeats with a frequency that depends on the power system. In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period ...

  3. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    Power in mechanical systems is the combination of forces and movement. In particular, power is the product of a force on an object and the object's velocity, or the product of a torque on a shaft and the shaft's angular velocity. Mechanical power is also described as the time derivative of work.

  4. Per-unit system - Wikipedia

    en.wikipedia.org/wiki/Per-unit_system

    In the power systems analysis field of electrical engineering, a per-unit system is the expression of system quantities as fractions of a defined base unit quantity. . Calculations are simplified because quantities expressed as per-unit do not change when they are referred from one side of a transformer to t

  5. Electric power - Wikipedia

    en.wikipedia.org/wiki/Electric_power

    Electric power is the rate of transfer of electrical energy within a circuit.Its SI unit is the watt, the general unit of power, defined as one joule per second.Standard prefixes apply to watts as with other SI units: thousands, millions and billions of watts are called kilowatts, megawatts and gigawatts respectively.

  6. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    The broken magenta line shows the cumulative power transmission within radius r, half of which flows inside the geometric mean of R 1 and R 2. The center conductor is held at voltage V and draws a current I toward the right, so we expect a total power flow of P = V · I according to basic laws of electricity. By evaluating the Poynting vector ...

  7. Power-flow study - Wikipedia

    en.wikipedia.org/wiki/Power-flow_study

    In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as Voltage, voltage angles, real power and reactive power.

  8. Signal-to-noise ratio - Wikipedia

    en.wikipedia.org/wiki/Signal-to-noise_ratio

    In the above formula, P is measured in units of power, such as watts (W) or milliwatts (mW), and the signal-to-noise ratio is a pure number. However, when the signal and noise are measured in volts (V) or amperes (A), which are measures of amplitude, [note 1] they must first be squared to obtain a quantity proportional to power, as shown below:

  9. Load-loss factor - Wikipedia

    en.wikipedia.org/wiki/Load-loss_factor

    Load-loss factor (also loss load factor, LLF, or simply loss factor [1]) is a dimensionless ratio between average and peak values of load loss (loss of electric power between the generator and the consumer in electricity distribution).