Search results
Results from the WOW.Com Content Network
USB ports and connectors are often color-coded to distinguish their different functions and USB versions. These colors are not part of the USB specification and can vary between manufacturers; for example, the USB 3.0 specification mandates appropriate color-coding while it only recommends blue inserts for Standard-A USB 3.0 connectors and plugs.
The written USB 3.0 specification was released by Intel and its partners in August 2008. The first USB 3.0 controller chips were sampled by NEC in May 2009, [4] and the first products using the USB 3.0 specification arrived in January 2010. [5] USB 3.0 connectors are generally backward compatible, but include new wiring and full-duplex operation.
The USB-IF used WiGig Serial Extension v1.2 specification as its initial foundation for the MA-USB specification and is compliant with SuperSpeed USB (3.0 and 3.1) and Hi-Speed USB (USB 2.0). Devices that use MA-USB will be branded as "Powered by MA-USB", provided the product qualifies its certification program.
This class can be used for industrial equipment such as CNC machinery to allow upgrading from older RS-232 serial controllers and robotics, since they can keep software compatibility. The device attaches to an RS-232 communications line and the operating system on the USB side makes the USB device appear as a traditional RS-232 port.
The USB 3.1 specification takes over the existing USB 3.0's SuperSpeed USB transfer rate, now referred to as USB 3.1 Gen 1, and introduces a faster transfer rate called SuperSpeed USB 10 Gbps, corresponding to operation mode USB 3.1 Gen 2, [62] putting it on par with a single first-generation Thunderbolt channel.
For example, a USB 2 PCIe host controller card that presents 4 USB "Standard A" connectors typically presents one 4-port EHCI and two 2-port OHCI controllers to system software. When a high-speed USB device is attached to any of the 4 connectors, the device is managed through one of the 4 root hub ports of the EHCI controller.
The Linux kernel has supported USB mass-storage devices since version 2.3.47 [3] (2001, backported to kernel 2.2.18 [4]).This support includes quirks and silicon/firmware bug workarounds as well as additional functionality for devices and controllers (vendor-enabled functions such as ATA command pass-through for ATA-USB bridges, used for S.M.A.R.T. or temperature monitoring, controlling the ...
Following is a list of code names that have been used to identify computer hardware and software products while in development. In some cases, the code name became the completed product's name, but most of these code names are no longer used once the associated products are released.