Search results
Results from the WOW.Com Content Network
Python supports most object oriented programming (OOP) techniques. It allows polymorphism, not only within a class hierarchy but also by duck typing. Any object can be used for any type, and it will work so long as it has the proper methods and attributes. And everything in Python is an object, including classes, functions, numbers and modules.
In Python 3.x the range() function [28] returns a generator which computes elements of the list on demand. Elements are only generated when they are needed (e.g., when print(r[3]) is evaluated in the following example), so this is an example of lazy or deferred evaluation:
The C++ Standard Library also supports for_each, [10] that applies each element to a function, which can be any predefined function or a lambda expression. While range-based for is only from the start to the end, the range or direction can be changed by altering the first two parameters.
A function object solves those problems since the function is really a façade for a full object, carrying its own state. Many modern (and some older) languages, e.g. C++, Eiffel, Groovy, Lisp, Smalltalk, Perl, PHP, Python, Ruby, Scala, and many others, support first-class function objects and may even make significant use of them. [3]
Python 3.13 introduces some change in behavior, i.e. new "well-defined semantics", fixing bugs (plus many removals of deprecated classes, functions and methods, and removed some of the C API and outdated modules): "The [old] implementation of locals() and frame.f_locals is slow, inconsistent and buggy [and it] has many corner cases and oddities ...
In computer programming, bounds checking is any method of detecting whether a variable is within some bounds before it is used. It is usually used to ensure that a number fits into a given type (range checking), or that a variable being used as an array index is within the bounds of the array (index checking).
In languages which support first-class functions and currying, map may be partially applied to lift a function that works on only one value to an element-wise equivalent that works on an entire container; for example, map square is a Haskell function which squares each element of a list.
A local class is a class defined within a procedure or function. Such structure limits references to the class name to within the scope where the class is declared. Depending on the semantic rules of the language, there may be additional restrictions on local classes compared to non-local ones.