Search results
Results from the WOW.Com Content Network
Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.
Encog supports different learning algorithms such as Bayesian Networks, Hidden Markov Models and Support Vector Machines. However, its main strength lies in its neural network algorithms. Encog contains classes to create a wide variety of networks, as well as support classes to normalize and process data for these neural networks.
Recurrent neural networks (RNNs) are a class of artificial neural network commonly used for sequential data processing. Unlike feedforward neural networks, which process data in a single pass, RNNs process data across multiple time steps, making them well-adapted for modelling and processing text, speech, and time series.
Neural networks can also be optimized by using a universal search algorithm on the space of neural network's weights, e.g., random guess or more systematically genetic algorithm. This approach is not based on gradient and avoids the vanishing gradient problem. [22]
This led to the long short-term memory (LSTM), a type of recurrent neural network. The name LSTM was introduced in a tech report (1995) leading to the most cited LSTM publication (1997), co-authored by Hochreiter and Schmidhuber. [19] It was not yet the standard LSTM architecture which is used in almost all current applications. The standard ...
In machine learning, the Highway Network was the first working very deep feedforward neural network with hundreds of layers, much deeper than previous neural networks. [ 1 ] [ 2 ] [ 3 ] It uses skip connections modulated by learned gating mechanisms to regulate information flow, inspired by long short-term memory (LSTM) recurrent neural networks .
A large collection of Question to SPARQL specially design for Open Domain Neural Question Answering over DBpedia Knowledgebase. This dataset contains a large collection of Open Neural SPARQL Templates and instances for training Neural SPARQL Machines; it was pre-processed by semi-automatic annotation tools as well as by three SPARQL experts ...
Some artificial neural networks are adaptive systems and are used for example to model populations and environments, which constantly change. Neural networks can be hardware- (neurons are represented by physical components) or software-based (computer models), and can use a variety of topologies and learning algorithms.