enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Absolutely and completely monotonic functions and sequences

    en.wikipedia.org/wiki/Absolutely_and_completely...

    The notions of completely and absolutely monotone function/sequence play an important role in several areas of mathematics. For example, in classical analysis they occur in the proof of the positivity of integrals involving Bessel functions or the positivity of Cesàro means of certain Jacobi series. [6]

  3. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  4. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    Exponentiation occurs in many areas of mathematics and its inverse function is often referred to as the logarithm. For example, the logarithm of a matrix is the (multi-valued) inverse function of the matrix exponential. [97] Another example is the p-adic logarithm, the inverse function of the p-adic exponential.

  5. Monotonic function - Wikipedia

    en.wikipedia.org/wiki/Monotonic_function

    In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. [ 1 ] [ 2 ] [ 3 ] This concept first arose in calculus , and was later generalized to the more abstract setting of order theory .

  6. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm function, if considered as a real-valued function of a positive real variable, is the inverse function of the exponential function, leading to the identities: ⁡ = + ⁡ = Like all logarithms, the natural logarithm maps multiplication of positive numbers into addition: [ 5 ] ln ⁡ ( x ⋅ y ) = ln ⁡ x + ln ⁡ y ...

  7. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The complex logarithm is the complex number analogue of the logarithm function. No single valued function on the complex plane can satisfy the normal rules for logarithms. However, a multivalued function can be defined which satisfies most of the identities. It is usual to consider this as a function defined on a Riemann surface.

  8. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    The logarithm function () = ⁡ is concave on its domain (,), as its derivative is a strictly decreasing function. Any affine function f ( x ) = a x + b {\displaystyle f(x)=ax+b} is both concave and convex, but neither strictly-concave nor strictly-convex.

  9. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g. 10 for decimal arithmetic. [3] In more advanced mathematics, the partial sums of the harmonic series