enow.com Web Search

  1. Ads

    related to: solving for domain algebraically rules and formulas practice

Search results

  1. Results from the WOW.Com Content Network
  2. Domain (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Domain_(ring_theory)

    In algebra, a domain is a nonzero ring in which ab = 0 implies a = 0 or b = 0. [1] (Sometimes such a ring is said to "have the zero-product property".) Equivalently, a domain is a ring in which 0 is the only left zero divisor (or equivalently, the only right zero divisor). A commutative domain is called an integral domain.

  3. Linear equation over a ring - Wikipedia

    en.wikipedia.org/wiki/Linear_equation_over_a_ring

    More generally, linear algebra is effective on a principal ideal domain if there are algorithms for addition, subtraction and multiplication, and Solving equations of the form ax = b, that is, testing whether a is a divisor of b, and, if this is the case, computing the quotient a/b,

  4. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    A is a pre-Schreier domain and atomic. A has a divisor theory in which every divisor is principal. A is a Krull domain in which every divisorial ideal is principal (in fact, this is the definition of UFD in Bourbaki.) A is a Krull domain and every prime ideal of height 1 is principal. [7] In practice, (2) and (3) are the most useful conditions ...

  5. Principal ideal domain - Wikipedia

    en.wikipedia.org/wiki/Principal_ideal_domain

    An integral domain is a UFD if and only if it is a GCD domain (i.e., a domain where every two elements have a greatest common divisor) satisfying the ascending chain condition on principal ideals. An integral domain is a Bézout domain if and only if any two elements in it have a gcd that is a linear combination of the two.

  6. Domain of a function - Wikipedia

    en.wikipedia.org/wiki/Domain_of_a_function

    The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis , a domain is a non-empty connected open subset of the real coordinate space R n {\displaystyle \mathbb {R} ^{n}} or the complex coordinate space C n ...

  7. Collocation method - Wikipedia

    en.wikipedia.org/wiki/Collocation_method

    In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...

  8. Dedekind domain - Wikipedia

    en.wikipedia.org/wiki/Dedekind_domain

    A Dedekind domain can also be characterized in terms of homological algebra: an integral domain is a Dedekind domain if and only if it is a hereditary ring; that is, every submodule of a projective module over it is projective. Similarly, an integral domain is a Dedekind domain if and only if every divisible module over it is injective. [3]

  9. Domain (mathematical analysis) - Wikipedia

    en.wikipedia.org/wiki/Domain_(mathematical_analysis)

    In complex analysis, a complex domain (or simply domain) is any connected open subset of the complex plane C. For example, the entire complex plane is a domain, as is the open unit disk, the open upper half-plane, and so forth. Often, a complex domain serves as the domain of definition for a holomorphic function.

  1. Ads

    related to: solving for domain algebraically rules and formulas practice