Search results
Results from the WOW.Com Content Network
Microbial metabolism is the means by which a microbe obtains the energy and nutrients (e.g. carbon) it needs to live and reproduce.Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics.
The heliobacteria are phototrophic: they convert light energy into chemical energy using a type I reaction center. [6] [7] The primary pigment involved is bacteriochlorophyll g, which is unique to the group and has a unique absorption spectrum; this gives the heliobacteria their own environmental niche. [5]
Some bacteria are limited to only one nutritional group, whereas others are facultative and switch from one mode to the other, depending on the nutrient sources available. [16] Sulfur-oxidizing, iron, and anammox bacteria as well as methanogens are chemolithoautotrophs, using inorganic energy, electron, and carbon sources.
Bacteriochlorophyll and carotenoids are two molecules responsible for harvesting light energy. Current models of the organization of bacteriochlorophyll and carotenoids (the main constituents) inside the chlorosomes have put them in a lamellar organization, where the long farnesol tails of the bacteriochlorophyll intermix with carotenoids and each other, forming a structure resembling a lipid ...
Metabolism (/ m ə ˈ t æ b ə l ɪ z ə m /, from Greek: μεταβολή metabolē, "change") is the set of life-sustaining chemical reactions in organisms.The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks of proteins, lipids, nucleic acids, and some carbohydrates; and the ...
PEP (phosphoenol pyruvate) group translocation, also known as the phosphotransferase system or PTS, is a distinct method used by bacteria for sugar uptake where the source of energy is from phosphoenolpyruvate (PEP). It is known to be a multicomponent system that always involves enzymes of the plasma membrane and those in the cytoplasm.
Photosynthetic carbohydrate synthesis in plants and certain bacteria is an anabolic process that produces glucose, cellulose, starch, lipids, and proteins from CO 2. [6] It uses the energy produced from the light-driven reactions of photosynthesis, and creates the precursors to these large molecules via carbon assimilation in the photosynthetic ...
The word bacteria is the plural of the Neo-Latin bacterium, which is the romanisation of the Ancient Greek βακτήριον (baktḗrion), [6] the diminutive of βακτηρία (baktēría), meaning "staff, cane", [7] because the first ones to be discovered were rod-shaped. [8] [9]