Ads
related to: cosh x identities worksheet 1teacherspayteachers.com has been visited by 100K+ users in the past month
- Assessment
Creative ways to see what students
know & help them with new concepts.
- Try Easel
Level up learning with interactive,
self-grading TPT digital resources.
- Free Resources
Download printables for any topic
at no cost to you. See what's free!
- Packets
Perfect for independent work!
Browse our fun activity packs.
- Assessment
Search results
Results from the WOW.Com Content Network
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
For arcoth, the argument of the logarithm is in (−∞, 0], if and only if z belongs to the real interval [−1, 1]. Therefore, these formulas define convenient principal values, for which the branch cuts are (−∞, −1] and [1, ∞) for the inverse hyperbolic tangent, and [−1, 1] for the inverse hyperbolic cotangent.
A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x -axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).
If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.
The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse hyperbolic functions. For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
Since cosh x + sinh x = e x, an analog to de Moivre's formula also applies to the hyperbolic trigonometry. For all integers n, ( + ) = + . If n is a rational number (but not necessarily an integer), then cosh nx + sinh nx will be one of the values of (cosh x + sinh x) n. [4]
Instead of +∞ and −∞, we have only one ∞, at both ends of the real line. That is often appropriate when dealing with rational functions and with trigonometric functions. (This is the one-point compactification of the line.) As x varies, the point (cos x, sin x) winds repeatedly around the unit circle centered at (0, 0). The point
Ads
related to: cosh x identities worksheet 1teacherspayteachers.com has been visited by 100K+ users in the past month