enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Boundary layer - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer

    The layer of air over the wing's surface that is slowed down or stopped by viscosity, is the boundary layer. There are two different types of boundary layer flow: laminar and turbulent. [1] Laminar boundary layer flow. The laminar boundary is a very smooth flow, while the turbulent boundary layer contains swirls or "eddies."

  3. Boundary layer thickness - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer_thickness

    The boundary layer thickness, , is the distance normal to the wall to a point where the flow velocity has essentially reached the 'asymptotic' velocity, .Prior to the development of the Moment Method, the lack of an obvious method of defining the boundary layer thickness led much of the flow community in the later half of the 1900s to adopt the location , denoted as and given by

  4. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    Because air has viscosity, this layer of air tends to adhere to the wing. As the wing moves forward through the air, the boundary layer at first flows smoothly over the streamlined shape of the airfoil. Here, the flow is laminar and the boundary layer is a laminar layer. Prandtl applied the concept of the laminar boundary layer to airfoils in 1904.

  5. Flow separation - Wikipedia

    en.wikipedia.org/wiki/Flow_separation

    In fluid dynamics, flow separation or boundary layer separation is the detachment of a boundary layer from a surface into a wake. [1] A boundary layer exists whenever there is relative movement between a fluid and a solid surface with viscous forces present in the layer of fluid close to the surface. The flow can be externally, around a body ...

  6. Laminar sublayer - Wikipedia

    en.wikipedia.org/wiki/Laminar_sublayer

    The laminar sublayer, also called the viscous sublayer, is the region of a mainly-turbulent flow that is near a no-slip boundary and in which viscous shear stresses are important. As such, it is a type of boundary layer. The existence of the viscous sublayer can be understood in that the flow velocity decreases towards the no-slip boundary.

  7. Thermal boundary layer thickness and shape - Wikipedia

    en.wikipedia.org/wiki/Thermal_boundary_layer...

    The thermal boundary layer thickness, , is the distance across a boundary layer from the wall to a point where the flow temperature has essentially reached the 'free stream' temperature, . This distance is defined normal to the wall in the y {\displaystyle y} -direction.

  8. Boundary layer control - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer_control

    Laminar flow produces less skin friction than turbulent but a turbulent boundary layer transfers heat better. Turbulent boundary layers are more resistant to separation. The energy in a boundary layer may need to be increased to keep it attached to its surface. Fresh air can be introduced through slots or mixed in from above.

  9. Blasius boundary layer - Wikipedia

    en.wikipedia.org/wiki/Blasius_boundary_layer

    A schematic diagram of the Blasius flow profile. The streamwise velocity component () / is shown, as a function of the similarity variable .. Using scaling arguments, Ludwig Prandtl [1] argued that about half of the terms in the Navier-Stokes equations are negligible in boundary layer flows (except in a small region near the leading edge of the plate).